Abstract:The advent of 6G networks opens new possibilities for connected infotainment services in vehicular environments. However, traditional Radio Resource Management (RRM) techniques struggle with the increasing volume and complexity of data such as Channel Quality Indicators (CQI) from autonomous vehicles. To address this, we propose SCAR (State-Space Compression for AI-Driven Resource Management), an Edge AI-assisted framework that optimizes scheduling and fairness in vehicular infotainment. SCAR employs ML-based compression techniques (e.g., clustering and RBF networks) to reduce CQI data size while preserving essential features. These compressed states are used to train 6G-enabled Reinforcement Learning policies that maximize throughput while meeting fairness objectives defined by the NGMN. Simulations show that SCAR increases time in feasible scheduling regions by 14\% and reduces unfair scheduling time by 15\% compared to RL baselines without CQI compression. Furthermore, Simulated Annealing with Stochastic Tunneling (SAST)-based clustering reduces CQI clustering distortion by 10\%, confirming its efficiency. These results demonstrate SCAR's scalability and fairness benefits for dynamic vehicular networks.
Abstract:Modern transportation systems face growing challenges in managing traffic flow, ensuring safety, and maintaining operational efficiency amid dynamic traffic patterns. Addressing these challenges requires intelligent solutions capable of real-time monitoring, predictive analytics, and adaptive control. This paper proposes an architecture for DigIT, a Digital Twin (DT) platform for Intelligent Transportation Systems (ITS), designed to overcome the limitations of existing frameworks by offering a modular and scalable solution for traffic management. Built on a Domain Concept Model (DCM), the architecture systematically models key ITS components enabling seamless integration of predictive modeling and simulations. The architecture leverages machine learning models to forecast traffic patterns based on historical and real-time data. To adapt to evolving traffic patterns, the architecture incorporates adaptive Machine Learning Operations (MLOps), automating the deployment and lifecycle management of predictive models. Evaluation results highlight the effectiveness of the architecture in delivering accurate predictions and computational efficiency.