Abstract:Large Language Models (LLMs) are transforming enterprise workflows but introduce security and ethics challenges when employees inadvertently share confidential data or generate policy-violating content. This paper proposes SafeGPT, a two-sided guardrail system preventing sensitive data leakage and unethical outputs. SafeGPT integrates input-side detection/redaction, output-side moderation/reframing, and human-in-the-loop feedback. Experiments demonstrate SafeGPT effectively reduces data leakage risk and biased outputs while maintaining satisfaction.