Abstract:Accurate prediction of solar energetic particle events is vital for safeguarding satellites, astronauts, and space-based infrastructure. Modern space weather monitoring generates massive volumes of high-frequency, multivariate time series (MVTS) data from sources such as the Geostationary perational Environmental Satellites (GOES). Machine learning (ML) models trained on this data show strong predictive power, but most existing methods overlook domain-specific feasibility constraints. Counterfactual explanations have emerged as a key tool for improving model interpretability, yet existing approaches rarely enforce physical plausibility. This work introduces a Physics-Guided Counterfactual Explanation framework, a novel method for generating counterfactual explanations in time series classification tasks that remain consistent with underlying physical principles. Applied to solar energetic particles (SEP) forecasting, this framework achieves over 80% reduction in Dynamic Time Warping (DTW) distance increasing the proximity, produces counterfactual explanations with higher sparsity, and reduces runtime by nearly 50% compared to state-of-the-art baselines such as DiCE. Beyond numerical improvements, this framework ensures that generated counterfactual explanations are physically plausible and actionable in scientific domains. In summary, the framework generates counterfactual explanations that are both valid and physically consistent, while laying the foundation for scalable counterfactual generation in big data environments.
Abstract:Solar energetic particle (SEP) events, as one of the most prominent manifestations of solar activity, can generate severe hazardous radiation when accelerated by solar flares or shock waves formed aside from coronal mass ejections (CMEs). However, most existing data-driven methods used for SEP predictions are operated as black-box models, making it challenging for solar physicists to interpret the results and understand the underlying physical causes of such events rather than just obtain a prediction. To address this challenge, we propose a novel framework that integrates global explanations and ad-hoc feature mapping to enhance model transparency and provide deeper insights into the decision-making process. We validate our approach using a dataset of 341 SEP events, including 244 significant (>=10 MeV) proton events exceeding the Space Weather Prediction Center S1 threshold, spanning solar cycles 22, 23, and 24. Furthermore, we present an explainability-focused case study of major SEP events, demonstrating how our method improves explainability and facilitates a more physics-informed understanding of SEP event prediction.