Abstract:We propose Enginuity - the first open, large-scale, multi-domain engineering diagram dataset with comprehensive structural annotations designed for automated diagram parsing. By capturing hierarchical component relationships, connections, and semantic elements across diverse engineering domains, our proposed dataset would enable multimodal large language models to address critical downstream tasks including structured diagram parsing, cross-modal information retrieval, and AI-assisted engineering simulation. Enginuity would be transformative for AI for Scientific Discovery by enabling artificial intelligence systems to comprehend and manipulate the visual-structural knowledge embedded in engineering diagrams, breaking down a fundamental barrier that currently prevents AI from fully participating in scientific workflows where diagram interpretation, technical drawing analysis, and visual reasoning are essential for hypothesis generation, experimental design, and discovery.
Abstract:Technical reports and articles often contain valuable information in the form of semi-structured data like charts, and figures. Interpreting these and using the information from them is essential for downstream tasks such as question answering (QA). Current approaches to visual question answering often struggle with the precision required for scientific data interpretation, particularly in handling numerical values, multi-step reasoning over visual elements, and maintaining consistency between visual observation and textual reasoning. We present our approach to the SciVQA 2025 shared task, focusing on answering visual and non-visual questions grounded in scientific figures from scholarly articles. We conducted a series of experiments using models with 5B to 8B parameters. Our strongest individual model, InternVL3, achieved ROUGE-1 and ROUGE-L F1 scores of \textbf{0.740} and a BERTScore of \textbf{0.983} on the SciVQA test split. We also developed an ensemble model with multiple vision language models (VLMs). Through error analysis on the validation split, our ensemble approach improved performance compared to most individual models, though InternVL3 remained the strongest standalone performer. Our findings underscore the effectiveness of prompt optimization, chain-of-thought reasoning and ensemble modeling in improving the model's ability in visual question answering.