Abstract:Gaussian blur is widely used to blur human faces in sensitive photos before the photos are posted on the Internet. However, it is unclear to what extent the blurred faces can be restored and used to re-identify the person, especially under a high-blurring setting. In this paper, we explore this question by developing a deblurring method called Revelio. The key intuition is to leverage a generative model's memorization effect and approximate the inverse function of Gaussian blur for face restoration. Compared with existing methods, we design the deblurring process to be identity-preserving. It uses a conditional Diffusion model for preliminary face restoration and then uses an identity retrieval model to retrieve related images to further enhance fidelity. We evaluate Revelio with large public face image datasets and show that it can effectively restore blurred faces, especially under a high-blurring setting. It has a re-identification accuracy of 95.9%, outperforming existing solutions. The result suggests that Gaussian blur should not be used for face anonymization purposes. We also demonstrate the robustness of this method against mismatched Gaussian kernel sizes and functions, and test preliminary countermeasures and adaptive attacks to inspire future work.
Abstract:Our research discovers how the rolling shutter and movable lens structures widely found in smartphone cameras modulate structure-borne sounds onto camera images, creating a point-of-view (POV) optical-acoustic side channel for acoustic eavesdropping. The movement of smartphone camera hardware leaks acoustic information because images unwittingly modulate ambient sound as imperceptible distortions. Our experiments find that the side channel is further amplified by intrinsic behaviors of Complementary metal-oxide-semiconductor (CMOS) rolling shutters and movable lenses such as in Optical Image Stabilization (OIS) and Auto Focus (AF). Our paper characterizes the limits of acoustic information leakage caused by structure-borne sound that perturbs the POV of smartphone cameras. In contrast with traditional optical-acoustic eavesdropping on vibrating objects, this side channel requires no line of sight and no object within the camera's field of view (images of a ceiling suffice). Our experiments test the limits of this side channel with a novel signal processing pipeline that extracts and recognizes the leaked acoustic information. Our evaluation with 10 smartphones on a spoken digit dataset reports 80.66%, 91.28%, and 99.67% accuracies on recognizing 10 spoken digits, 20 speakers, and 2 genders respectively. We further systematically discuss the possible defense strategies and implementations. By modeling, measuring, and demonstrating the limits of acoustic eavesdropping from smartphone camera image streams, our contributions explain the physics-based causality and possible ways to reduce the threat on current and future devices.