Abstract:This paper introduces a novel multiscale object-based graph neural network called MOB-GCN for hyperspectral image (HSI) classification. The central aim of this study is to enhance feature extraction and classification performance by utilizing multiscale object-based image analysis (OBIA). Traditional pixel-based methods often suffer from low accuracy and speckle noise, while single-scale OBIA approaches may overlook crucial information of image objects at different levels of detail. MOB-GCN overcomes these challenges by extracting and integrating features from multiple segmentation scales, leveraging the Multiresolution Graph Network (MGN) architecture to capture both fine-grained and global spatial patterns. MOB-GCN addresses this issue by extracting and integrating features from multiple segmentation scales to improve classification results using the Multiresolution Graph Network (MGN) architecture that can model fine-grained and global spatial patterns. By constructing a dynamic multiscale graph hierarchy, MOB-GCN offers a more comprehensive understanding of the intricate details and global context of HSIs. Experimental results demonstrate that MOB-GCN consistently outperforms single-scale graph convolutional networks (GCNs) in terms of classification accuracy, computational efficiency, and noise reduction, particularly when labeled data is limited. The implementation of MOB-GCN is publicly available at https://github.com/HySonLab/MultiscaleHSI
Abstract:This paper presents a systematic study the effects of compression on hyperspectral pixel classification task. We use five dimensionality reduction methods -- PCA, KPCA, ICA, AE, and DAE -- to compress 301-dimensional hyperspectral pixels. Compressed pixels are subsequently used to perform pixel-based classifications. Pixel classification accuracies together with compression method, compression rates, and reconstruction errors provide a new lens to study the suitability of a compression method for the task of pixel-based classification. We use three high-resolution hyperspectral image datasets, representing three common landscape units (i.e. urban, transitional suburban, and forests) collected by the Remote Sensing and Spatial Ecosystem Modeling laboratory of the University of Toronto. We found that PCA, KPCA, and ICA post greater signal reconstruction capability; however, when compression rate is more than 90\% those methods showed lower classification scores. AE and DAE methods post better classification accuracy at 95\% compression rate, however decreasing again at 97\%, suggesting a sweet-spot at the 95\% mark. Our results demonstrate that the choice of a compression method with the compression rate are important considerations when designing a hyperspectral image classification pipeline.