Abstract:Bahnar, a minority language spoken across Vietnam, Cambodia, and Laos, faces significant preservation challenges due to limited research and data availability. This study addresses the critical need for accurate digitization of Bahnar language documents through optical character recognition (OCR) technology. Digitizing scanned paper documents poses significant challenges, as degraded image quality from broken or blurred areas introduces considerable OCR errors that compromise information retrieval systems. We propose a comprehensive approach combining advanced table and non-table detection techniques with probability-based post-processing heuristics to enhance recognition accuracy. Our method first applies detection algorithms to improve input data quality, then employs probabilistic error correction on OCR output. Experimental results indicate a substantial improvement, with recognition accuracy increasing from 72.86% to 79.26%. This work contributes valuable resources for Bahnar language preservation and provides a framework applicable to other minority language digitization efforts.
Abstract:Analog subcircuit identification is a core task in analog design, essential for simulation, sizing, and layout. Traditional methods often require extensive human expertise, rule-based encoding, or large labeled datasets. To address these challenges, we propose GENIE-ASI, the first training-free, large language model (LLM)-based methodology for analog subcircuit identification. GENIE-ASI operates in two phases: it first uses in-context learning to derive natural language instructions from a few demonstration examples, then translates these into executable Python code to identify subcircuits in unseen SPICE netlists. In addition, to evaluate LLM-based approaches systematically, we introduce a new benchmark composed of operational amplifier netlists (op-amps) that cover a wide range of subcircuit variants. Experimental results on the proposed benchmark show that GENIE-ASI matches rule-based performance on simple structures (F1-score = 1.0), remains competitive on moderate abstractions (F1-score = 0.81), and shows potential even on complex subcircuits (F1-score = 0.31). These findings demonstrate that LLMs can serve as adaptable, general-purpose tools in analog design automation, opening new research directions for foundation model applications in analog design automation.




Abstract:In software development, technical debt (TD) refers to suboptimal implementation choices made by the developers to meet urgent deadlines and limited resources, posing challenges for future maintenance. Self-Admitted Technical Debt (SATD) is a sub-type of TD, representing specific TD instances ``openly admitted'' by the developers and often expressed through source code comments. Previous research on SATD has focused predominantly on the Java programming language, revealing a significant gap in cross-language SATD. Such a narrow focus limits the generalizability of existing findings as well as SATD detection techniques across multiple programming languages. Our work addresses such limitation by introducing CppSATD, a dedicated C++ SATD dataset, comprising over 531,000 annotated comments and their source code contexts. Our dataset can serve as a foundation for future studies that aim to develop SATD detection methods in C++, generalize the existing findings to other languages, or contribute novel insights to cross-language SATD research.




Abstract:Quantizing weights and activations of deep neural networks is essential for deploying them in resource-constrained devices, or cloud platforms for at-scale services. While binarization is a special case of quantization, this extreme case often leads to several training difficulties, and necessitates specialized models and training methods. As a result, recent quantization methods do not provide binarization, thus losing the most resource-efficient option, and quantized and binarized networks have been distinct research areas. We examine binarization difficulties in a quantization framework and find that all we need to enable the binary training are a symmetric quantizer, good initialization, and careful hyperparameter selection. These techniques also lead to substantial improvements in multi-bit quantization. We demonstrate our unified quantization framework, denoted as UniQ, on the ImageNet dataset with various architectures such as ResNet-18,-34 and MobileNetV2. For multi-bit quantization, UniQ outperforms existing methods to achieve the state-of-the-art accuracy. In binarization, the achieved accuracy is comparable to existing state-of-the-art methods even without modifying the original architectures.