Abstract:Intracranial aneurysms remain a major cause of neurological morbidity and mortality worldwide, where rupture risk is tightly coupled to local hemodynamics particularly wall shear stress and oscillatory shear index. Conventional computational fluid dynamics simulations provide accurate insights but are prohibitively slow and require specialized expertise. Clinical imaging alternatives such as 4D Flow MRI offer direct in-vivo measurements, yet their spatial resolution remains insufficient to capture the fine-scale shear patterns that drive endothelial remodeling and rupture risk while being extremely impractical and expensive. We present a graph neural network surrogate model that bridges this gap by reproducing full-field hemodynamics directly from vascular geometries in less than one minute per cardiac cycle. Trained on a comprehensive dataset of high-fidelity simulations of patient-specific aneurysms, our architecture combines graph transformers with autoregressive predictions to accurately simulate blood flow, wall shear stress, and oscillatory shear index. The model generalizes across unseen patient geometries and inflow conditions without mesh-specific calibration. Beyond accelerating simulation, our framework establishes the foundation for clinically interpretable hemodynamic prediction. By enabling near real-time inference integrated with existing imaging pipelines, it allows direct comparison with hospital phase-diagram assessments and extends them with physically grounded, high-resolution flow fields. This work transforms high-fidelity simulations from an expert-only research tool into a deployable, data-driven decision support system. Our full pipeline delivers high-resolution hemodynamic predictions within minutes of patient imaging, without requiring computational specialists, marking a step-change toward real-time, bedside aneurysm analysis.
Abstract:Recently, the increasing use of deep reinforcement learning for flow control problems has led to a new area of research, focused on the coupling and the adaptation of the existing algorithms to the control of numerical fluid dynamics environments. Although still in its infancy, the field has seen multiple successes in a short time span, and its fast development pace can certainly be partly imparted to the open-source effort that drives the expansion of the community. Yet, this emerging domain still misses a common ground to (i) ensure the reproducibility of the results, and (ii) offer a proper ad-hoc benchmarking basis. To this end, we propose Beacon, an open-source benchmark library composed of seven lightweight 1D and 2D flow control problems with various characteristics, action and observation space characteristics, and CPU requirements. In this contribution, the seven considered problems are described, and reference control solutions are provided. The sources for the following work are available at https://github.com/jviquerat/beacon.