Abstract:We introduce the first best-of-both-worlds algorithm for contextual combinatorial semi-bandits that simultaneously guarantees $\widetilde{\mathcal{O}}(\sqrt{T})$ regret in the adversarial regime and $\widetilde{\mathcal{O}}(\ln T)$ regret in the corrupted stochastic regime. Our approach builds on the Follow-the-Regularized-Leader (FTRL) framework equipped with a Shannon entropy regularizer, yielding a flexible method that admits efficient implementations. Beyond regret bounds, we tackle the practical bottleneck in FTRL (or, equivalently, Online Stochastic Mirror Descent) arising from the high-dimensional projection step encountered in each round of interaction. By leveraging the Karush-Kuhn-Tucker conditions, we transform the $K$-dimensional convex projection problem into a single-variable root-finding problem, dramatically accelerating each round. Empirical evaluations demonstrate that this combined strategy not only attains the attractive regret bounds of best-of-both-worlds algorithms but also delivers substantial per-round speed-ups, making it well-suited for large-scale, real-time applications.
Abstract:Named entity recognition (NER) is a core task for historical research in automatically establishing all references to people, places, events and the like. Yet, do to the high linguistic and genre diversity of sources, only limited canonisation of spellings, the level of required historical domain knowledge, and the scarcity of annotated training data, established approaches to natural language processing (NLP) have been both extremely expensive and yielded only unsatisfactory results in terms of recall and precision. Our paper introduces a new approach. We demonstrate how readily-available, state-of-the-art LLMs significantly outperform two leading NLP frameworks, spaCy and flair, for NER in historical documents by seven to twentytwo percent higher F1-Scores. Our ablation study shows how providing historical context to the task and a bit of persona modelling that turns focus away from a purely linguistic approach are core to a successful prompting strategy. We also demonstrate that, contrary to our expectations, providing increasing numbers of examples in few-shot approaches does not improve recall or precision below a threshold of 16-shot. In consequence, our approach democratises access to NER for all historians by removing the barrier of scripting languages and computational skills required for established NLP tools and instead leveraging natural language prompts and consumer-grade tools and frontends.