Abstract:Accurate simulation of brain deformation is a key component for developing realistic, interactive neurosurgical simulators, as complex nonlinear deformations must be captured to ensure realistic tool-tissue interactions. However, traditional numerical solvers often fall short in meeting real-time performance requirements. To overcome this, we introduce a deep learning-based surrogate model that efficiently simulates transient brain deformation caused by continuous interactions between surgical instruments and the virtual brain geometry. Building on Universal Physics Transformers, our approach operates directly on large-scale mesh data and is trained on an extensive dataset generated from nonlinear finite element simulations, covering a broad spectrum of temporal instrument-tissue interaction scenarios. To reduce the accumulation of errors in autoregressive inference, we propose a stochastic teacher forcing strategy applied during model training. Specifically, training consists of short stochastic rollouts in which the proportion of ground truth inputs is gradually decreased in favor of model-generated predictions. Our results show that the proposed surrogate model achieves accurate and efficient predictions across a range of transient brain deformation scenarios, scaling to meshes with up to 150,000 nodes. The introduced stochastic teacher forcing technique substantially improves long-term rollout stability, reducing the maximum prediction error from 6.7 mm to 3.5 mm. We further integrate the trained surrogate model into an interactive neurosurgical simulation environment, achieving runtimes below 10 ms per simulation step on consumer-grade inference hardware. Our proposed deep learning framework enables rapid, smooth and accurate biomechanical simulations of dynamic brain tissue deformation, laying the foundation for realistic surgical training environments.
Abstract:Quantum machine learning has emerged as a promising application domain for near-term quantum hardware, particularly through hybrid quantum-classical models that leverage both classical and quantum processing. Although numerous hybrid architectures have been proposed and demonstrated successfully on benchmark tasks, a significant open question remains regarding the specific contribution of quantum components to the overall performance of these models. In this work, we aim to shed light on the impact of quantum processing within hybrid quantum-classical neural network architectures through a rigorous statistical study. We systematically assess common hybrid models on medical signal data as well as planar and volumetric images, examining the influence attributable to classical and quantum aspects such as encoding schemes, entanglement, and circuit size. We find that in best-case scenarios, hybrid models show performance comparable to their classical counterparts, however, in most cases, performance metrics deteriorate under the influence of quantum components. Our multi-modal analysis provides realistic insights into the contributions of quantum components and advocates for cautious claims and design choices for hybrid models in near-term applications.