Abstract:We introduce a new convolutional AutoEncoder architecture for user modelling and recommendation tasks with several improvements over the state of the art. Firstly, our model has the flexibility to learn a set of associations and combinations between different interaction types in a way that carries over to each user and item. Secondly, our model is able to learn jointly from both the explicit ratings and the implicit information in the sampling pattern (which we refer to as `implicit feedback'). It can also make separate predictions for the probability of consuming content and the likelihood of granting it a high rating if observed. This not only allows the model to make predictions for both the implicit and explicit feedback, but also increases the informativeness of the predictions: in particular, our model can identify items which users would not have been likely to consume naturally, but would be likely to enjoy if exposed to them. Finally, we provide several generalization bounds for our model, which to the best of our knowledge, are among the first generalization bounds for auto-encoders in a Recommender Systems setting; we also show that optimizing our loss function guarantees the recovery of the exact sampling distribution over interactions up to a small error in total variation. In experiments on several real-life datasets, we achieve state-of-the-art performance on both the implicit and explicit feedback prediction tasks despite relying on a single model for both, and benefiting from additional interpretability in the form of individual predictions for the probabilities of each possible rating.
Abstract:Industry-scale recommender systems face a core challenge: representing entities with high cardinality, such as users or items, using dense embeddings that must be accessible during both training and inference. However, as embedding sizes grow, memory constraints make storage and access increasingly difficult. We describe a lightweight, learnable embedding compression technique that projects dense embeddings into a high-dimensional, sparsely activated space. Designed for retrieval tasks, our method reduces memory requirements while preserving retrieval performance, enabling scalable deployment under strict resource constraints. Our results demonstrate that leveraging sparsity is a promising approach for improving the efficiency of large-scale recommenders. We release our code at https://github.com/recombee/CompresSAE.
Abstract:The evaluation of recommendation systems is a complex task. The offline and online evaluation metrics for recommender systems are ambiguous in their true objectives. The majority of recently published papers benchmark their methods using ill-posed offline evaluation methodology that often fails to predict true online performance. Because of this, the impact that academic research has on the industry is reduced. The aim of our research is to investigate and compare the online performance of offline evaluation metrics. We show that penalizing popular items and considering the time of transactions during the evaluation significantly improves our ability to choose the best recommendation model for a live recommender system. Our results, averaged over five large-size real-world live data procured from recommenders, aim to help the academic community to understand better offline evaluation and optimization criteria that are more relevant for real applications of recommender systems.