Abstract:Precise and scalable instance segmentation of cell nuclei is essential for computational pathology, yet gigapixel Whole-Slide Images pose major computational challenges. Existing approaches rely on patch-based processing and costly post-processing for instance separation, sacrificing context and efficiency. We introduce LSP-DETR (Local Star Polygon DEtection TRansformer), a fully end-to-end framework that uses a lightweight transformer with linear complexity to process substantially larger images without additional computational cost. Nuclei are represented as star-convex polygons, and a novel radial distance loss function allows the segmentation of overlapping nuclei to emerge naturally, without requiring explicit overlap annotations or handcrafted post-processing. Evaluations on PanNuke and MoNuSeg show strong generalization across tissues and state-of-the-art efficiency, with LSP-DETR being over five times faster than the next-fastest leading method. Code and models are available at https://github.com/RationAI/lsp-detr.
Abstract:We present a clustering-based explainability technique for digital pathology models based on convolutional neural networks. Unlike commonly used methods based on saliency maps, such as occlusion, GradCAM, or relevance propagation, which highlight regions that contribute the most to the prediction for a single slide, our method shows the global behaviour of the model under consideration, while also providing more fine-grained information. The result clusters can be visualised not only to understand the model, but also to increase confidence in its operation, leading to faster adoption in clinical practice. We also evaluate the performance of our technique on an existing model for detecting prostate cancer, demonstrating its usefulness.