Abstract:The development of generative large language models (G-LLM) opened up new opportunities for the development of new types of knowledge-based systems similar to ChatGPT, Bing, or Gemini. Fine-tuning (FN) and Retrieval-Augmented Generation (RAG) are the techniques that can be used to implement domain adaptation for the development of G-LLM-based knowledge systems. In our study, using ROUGE, BLEU, METEOR scores, and cosine similarity, we compare and examine the performance of RAG and FN for the GPT-J-6B, OPT-6.7B, LlaMA, LlaMA-2 language models. Based on measurements shown on different datasets, we demonstrate that RAG-based constructions are more efficient than models produced with FN. We point out that connecting RAG and FN is not trivial, because connecting FN models with RAG can cause a decrease in performance. Furthermore, we outline a simple RAG-based architecture which, on average, outperforms the FN models by 16% in terms of the ROGUE score, 15% in the case of the BLEU score, and 53% based on the cosine similarity. This shows the significant advantage of RAG over FN in terms of hallucination, which is not offset by the fact that the average 8% better METEOR score of FN models indicates greater creativity compared to RAG.
Abstract:Introduction: Covert tobacco advertisements often raise regulatory measures. This paper presents that artificial intelligence, particularly deep learning, has great potential for detecting hidden advertising and allows unbiased, reproducible, and fair quantification of tobacco-related media content. Methods: We propose an integrated text and image processing model based on deep learning, generative methods, and human reinforcement, which can detect smoking cases in both textual and visual formats, even with little available training data. Results: Our model can achieve 74\% accuracy for images and 98\% for text. Furthermore, our system integrates the possibility of expert intervention in the form of human reinforcement. Conclusions: Using the pre-trained multimodal, image, and text processing models available through deep learning makes it possible to detect smoking in different media even with few training data.