Abstract:The precision, stability, and performance of lightweight high-strength steel structures in heavy machinery is affected by their highly nonlinear dynamics. This, in turn, makes control more difficult, simulation more computationally intensive, and achieving real-time autonomy, using standard approaches, impossible. Machine learning through data-driven, physics-informed and physics-inspired networks, however, promises more computationally efficient and accurate solutions to nonlinear dynamic problems. This study proposes a novel framework that has been developed to estimate real-time structural deflection in hydraulically actuated three-dimensional systems. It is based on SLIDE, a machine-learning-based method to estimate dynamic responses of mechanical systems subjected to forced excitations.~Further, an algorithm is introduced for the data acquisition from a hydraulically actuated system using randomized initial configurations and hydraulic pressures.~The new framework was tested on a hydraulically actuated flexible boom with various sensor combinations and lifting various payloads. The neural network was successfully trained in less time using standard parameters from PyTorch, ADAM optimizer, the various sensor inputs, and minimal output data. The SLIDE-trained neural network accelerated deflection estimation solutions by a factor of $10^7$ in reference to flexible multibody simulation batches and provided reasonable accuracy. These results support the studies goal of providing robust, real-time solutions for control, robotic manipulators, structural health monitoring, and automation problems.
Abstract:In computational engineering, enhancing the simulation speed and efficiency is a perpetual goal. To fully take advantage of neural network techniques and hardware, we present the SLiding-window Initially-truncated Dynamic-response Estimator (SLIDE), a deep learning-based method designed to estimate output sequences of mechanical or multibody systems with primarily, but not exclusively, forced excitation. A key advantage of SLIDE is its ability to estimate the dynamic response of damped systems without requiring the full system state, making it particularly effective for flexible multibody systems. The method truncates the output window based on the decay of initial effects, such as damping, which is approximated by the complex eigenvalues of the systems linearized equations. In addition, a second neural network is trained to provide an error estimation, further enhancing the methods applicability. The method is applied to a diverse selection of systems, including the Duffing oscillator, a flexible slider-crank system, and an industrial 6R manipulator, mounted on a flexible socket. Our results demonstrate significant speedups from the simulation up to several millions, exceeding real-time performance substantially.
Abstract:Over the years, complex control approaches have been developed to control the motion of a bicycle. Reinforcement Learning (RL), a branch of machine learning, promises easy deployment of so-called agents. Deployed agents are increasingly considered as an alternative to controllers for mechanical systems. The present work introduces an RL approach to do path following with a virtual bicycle model while simultaneously stabilising it laterally. The bicycle, modelled as the Whipple benchmark model and using multibody system dynamics, has no stabilisation aids. The agent succeeds in both path following and stabilisation of the bicycle model exclusively by outputting steering angles, which are converted into steering torques via a PD controller. Curriculum learning is applied as a state-of-the-art training strategy. Different settings for the implemented RL framework are investigated and compared to each other. The performance of the deployed agents is evaluated using different types of paths and measurements. The ability of the deployed agents to do path following and stabilisation of the bicycle model travelling between 2m/s and 7m/s along complex paths including full circles, slalom manoeuvres, and lane changes is demonstrated. Explanatory methods for machine learning are used to analyse the functionality of a deployed agent and link the introduced RL approach with research in the field of bicycle dynamics.