INSA Rennes, LACODAM
Abstract:This chapter illustrates the basic concepts of fault localization using a data mining technique. It utilizes the Trityp program to illustrate the general method. Formal concept analysis and association rule are two well-known methods for symbolic data mining. In their original inception, they both consider data in the form of an object-attribute table. In their original inception, they both consider data in the form of an object-attribute table. The chapter considers a debugging process in which a program is tested against different test cases. Two attributes, PASS and FAIL, represent the issue of the test case. The chapter extends the analysis of data mining for fault localization for the multiple fault situations. It addresses how data mining can be further applied to fault localization for GUI components. Unlike traditional software, GUI test cases are usually event sequences, and each individual event has a unique corresponding event handler.
Abstract:Nowadays, increasingly more data are available as knowledge graphs (KGs). While this data model supports advanced reasoning and querying, they remain difficult to mine due to their size and complexity. Graph mining approaches can be used to extract patterns from KGs. However this presents two main issues. First, graph mining approaches tend to extract too many patterns for a human analyst to interpret (pattern explosion). Second, real-life KGs tend to differ from the graphs usually treated in graph mining: they are multigraphs, their vertex degrees tend to follow a power-law, and the way in which they model knowledge can produce spurious patterns. Recently, a graph mining approach named GraphMDL+ has been proposed to tackle the problem of pattern explosion, using the Minimum Description Length (MDL) principle. However, GraphMDL+, like other graph mining approaches, is not suited for KGs without adaptations. In this paper we propose KG-MDL, a graph pattern mining approach based on the MDL principle that, given a KG, generates a human-sized and descriptive set of graph patterns, and so in a parameter-less and anytime way. We report on experiments on medium-sized KGs showing that our approach generates sets of patterns that are both small enough to be interpreted by humans and descriptive of the KG. We show that the extracted patterns highlight relevant characteristics of the data: both of the schema used to create the data, and of the concrete facts it contains. We also discuss the issues related to mining graph patterns on knowledge graphs, as opposed to other types of graph data.