Abstract:An ordinal classification (OC) problem corresponds to a special type of classification characterised by the presence of a natural order relationship among the classes. This type of problem can be found in a number of real-world applications, motivating the design and development of many ordinal methodologies over the last years. However, it is important to highlight that the development of the OC field suffers from one main disadvantage: the lack of a comprehensive set of datasets on which novel approaches to the literature have to be benchmarked. In order to approach this objective, this manuscript from the University of C\'ordoba (UCO), which have previous experience on the OC field, provides the literature with a publicly available repository of tabular data for a robust validation of novel OC approaches, namely TOC-UCO (Tabular Ordinal Classification repository of the UCO). Specifically, this repository includes a set of $46$ tabular ordinal datasets, preprocessed under a common framework and ensured to have a reasonable number of patterns and an appropriate class distribution. We also provide the sources and preprocessing steps of each dataset, along with details on how to benchmark a novel approach using the TOC-UCO repository. For this, indices for $30$ different randomised train-test partitions are provided to facilitate the reproducibility of the experiments.
Abstract:Heatwaves (HWs) are extreme atmospheric events that produce significant societal and environmental impacts. Predicting these extreme events remains challenging, as their complex interactions with large-scale atmospheric and climatic variables are difficult to capture with traditional statistical and dynamical models. This work presents a general method for driver identification in extreme climate events. A novel framework (STCO-FS) is proposed to identify key immediate (short-term) HW drivers by combining clustering algorithms with an ensemble evolutionary algorithm. The framework analyzes spatio-temporal data, reduces dimensionality by grouping similar geographical nodes for each variable, and develops driver selection in spatial and temporal domains, identifying the best time lags between predictive variables and HW occurrences. The proposed method has been applied to analyze HWs in the Adda river basin in Italy. The approach effectively identifies significant variables influencing HWs in this region. This research can potentially enhance our understanding of HW drivers and predictability.
Abstract:dlordinal is a new Python library that unifies many recent deep ordinal classification methodologies available in the literature. Developed using PyTorch as underlying framework, it implements the top performing state-of-the-art deep learning techniques for ordinal classification problems. Ordinal approaches are designed to leverage the ordering information present in the target variable. Specifically, it includes loss functions, various output layers, dropout techniques, soft labelling methodologies, and other classification strategies, all of which are appropriately designed to incorporate the ordinal information. Furthermore, as the performance metrics to assess novel proposals in ordinal classification depend on the distance between target and predicted classes in the ordinal scale, suitable ordinal evaluation metrics are also included. dlordinal is distributed under the BSD-3-Clause license and is available at https://github.com/ayrna/dlordinal.