



Abstract:Networks built on the IEEE 802.11 standard have experienced rapid growth in the last decade. Their field of application is vast, including smart home applications, Internet of Things (IoT), and short-range high throughput static and dynamic inter-vehicular communication networks. Within such networks, Channel State Information (CSI) provides a detailed view of the state of the communication channel and represents the combined effects of multipath propagation, scattering, phase shift, fading, and power decay. In this work, we investigate the problem of jamming attack detection in static and dynamic vehicular networks. We utilize ESP32-S3 modules to set up a communication network between an Unmanned Aerial Vehicle (UAV) and a Ground Control Station (GCS), to experimentally test the combined effects of a constant jammer on recorded CSI parameters, and the feasibility of jamming detection through CSI analysis in static and dynamic communication scenarios.
Abstract:In the era of cutting-edge autonomous systems, Unmanned Aerial Vehicles (UAVs) are becoming an essential part of the solutions for numerous complex challenges. This paper evaluates UAV peer-to-peer telemetry communication, highlighting its security vulnerabilities and explores a transition to a het-erogeneous multi-hop mesh all-to-all communication architecture to increase inter-swarm connectivity and reliability. Additionally, we suggest a symmetric key agreement and data encryption mechanism implementation for inter - swarm communication, to ensure data integrity and confidentiality without compromising performance.
Abstract:Unmanned Aerial Vehicles (UAVs) are evolving as adaptable platforms for a wide range of applications such as precise inspections, emergency response, and remote sensing. Autonomous UAV swarms require efficient and stable communication during deployment for a successful mission execution. For instance, the periodic exchange of telemetry data between all swarm members provides the foundation for formation flight and collision avoidance. However, due to the mobility of the vehicles and instability of wireless transmissions, maintaining a secure and reliable all-to-all communication remains challenging. This paper investigates encrypted and authenticated multi-hop broadcast communication based on the transmission of custom IEEE 802.11 Wi-Fi data frames.