Abstract:Recently, deep learning (DL) approaches to vulnerability detection have gained significant traction. These methods demonstrate promising results, often surpassing traditional static code analysis tools in effectiveness. In this study, we explore a novel approach to vulnerability detection utilizing the tools from topological data analysis (TDA) on the attention matrices of the BERT model. Our findings reveal that traditional machine learning (ML) techniques, when trained on the topological features extracted from these attention matrices, can perform competitively with pre-trained language models (LLMs) such as CodeBERTa. This suggests that TDA tools, including persistent homology, are capable of effectively capturing semantic information critical for identifying vulnerabilities.
Abstract:This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM). The challenge focused on the problem of representing data in different discrete topological domains in order to bridge the gap between Topological Deep Learning (TDL) and other types of structured datasets (e.g. point clouds, graphs). Specifically, participants were asked to design and implement topological liftings, i.e. mappings between different data structures and topological domains --like hypergraphs, or simplicial/cell/combinatorial complexes. The challenge received 52 submissions satisfying all the requirements. This paper introduces the main scope of the challenge, and summarizes the main results and findings.
Abstract:Triple periodic minimal surfaces (TPMS) have garnered significant interest due to their structural efficiency and controllable geometry, making them suitable for a wide range of applications. This paper investigates the relationships between porosity and persistence entropy with the shape factor of TPMS. We propose conjectures suggesting that these relationships are polynomial in nature, derived through the application of machine learning techniques. This study exemplifies the integration of machine learning methodologies in pure mathematical research. Besides the conjectures, we provide the mathematical models that might have the potential implications for the design and modeling of TPMS structures in various practical applications.
Abstract:Triple periodic minimal surfaces (TPMS) have garnered significant interest due to their structural efficiency and controllable geometry, making them suitable for a wide range of applications. This paper investigates the relationships between porosity and persistence entropy with the shape factor of TPMS. We propose conjectures suggesting that these relationships are polynomial in nature, derived through the application of machine learning techniques. This study exemplifies the integration of machine learning methodologies in pure mathematical research. Besides the conjectures, we provide the mathematical models that might have the potential implications for the design and modeling of TPMS structures in various practical applications.
Abstract:This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.