Abstract:We introduce the problem of simultaneously learning all powers of a Poisson Binomial Distribution (PBD). A PBD of order $n$ is the distribution of a sum of $n$ mutually independent Bernoulli random variables $X_i$, where $\mathbb{E}[X_i] = p_i$. The $k$'th power of this distribution, for $k$ in a range $[m]$, is the distribution of $P_k = \sum_{i=1}^n X_i^{(k)}$, where each Bernoulli random variable $X_i^{(k)}$ has $\mathbb{E}[X_i^{(k)}] = (p_i)^k$. The learning algorithm can query any power $P_k$ several times and succeeds in learning all powers in the range, if with probability at least $1- \delta$: given any $k \in [m]$, it returns a probability distribution $Q_k$ with total variation distance from $P_k$ at most $\epsilon$. We provide almost matching lower and upper bounds on query complexity for this problem. We first show a lower bound on the query complexity on PBD powers instances with many distinct parameters $p_i$ which are separated, and we almost match this lower bound by examining the query complexity of simultaneously learning all the powers of a special class of PBD's resembling the PBD's of our lower bound. We study the fundamental setting of a Binomial distribution, and provide an optimal algorithm which uses $O(1/\epsilon^2)$ samples. Diakonikolas, Kane and Stewart [COLT'16] showed a lower bound of $\Omega(2^{1/\epsilon})$ samples to learn the $p_i$'s within error $\epsilon$. The question whether sampling from powers of PBDs can reduce this sampling complexity, has a negative answer since we show that the exponential number of samples is inevitable. Having sampling access to the powers of a PBD we then give a nearly optimal algorithm that learns its $p_i$'s. To prove our two last lower bounds we extend the classical minimax risk definition from statistics to estimating functions of sequences of distributions.




Abstract:We study the performance of approximate Nash equilibria for linear congestion games. We consider how much the price of anarchy worsens and how much the price of stability improves as a function of the approximation factor $\epsilon$. We give (almost) tight upper and lower bounds for both the price of anarchy and the price of stability for atomic and non-atomic congestion games. Our results not only encompass and generalize the existing results of exact equilibria to $\epsilon$-Nash equilibria, but they also provide a unified approach which reveals the common threads of the atomic and non-atomic price of anarchy results. By expanding the spectrum, we also cast the existing results in a new light. For example, the Pigou network, which gives tight results for exact Nash equilibria of selfish routing, remains tight for the price of stability of $\epsilon$-Nash equilibria but not for the price of anarchy.