Abstract:The Common Model of Cognition (CMC) provides an abstract characterization of the structure and processing required by a cognitive architecture for human-like minds. We propose a unified approach to integrating metacognition within the CMC. We propose that metacognition involves reasoning over explicit representations of an agent's cognitive capabilities and processes in working memory. Our proposal exploits the existing cognitive capabilities of the CMC, making minimal extensions in the structure and information available within working memory. We provide examples of metacognition within our proposal.
Abstract:We present a distributed vector representation based on a simplification of the BEAGLE system, designed in the context of the Sigma cognitive architecture. Our method does not require gradient-based training of neural networks, matrix decompositions as with LSA, or convolutions as with BEAGLE. All that is involved is a sum of random vectors and their pointwise products. Despite the simplicity of this technique, it gives state-of-the-art results on analogy problems, in most cases better than Word2Vec. To explain this success, we interpret it as a dimension reduction via random projection.