Abstract:This paper presents a deep Koopman-based Economic Model Predictive Control (EMPC) for efficient operation of a laboratory-scale pasteurization unit (PU). The method uses Koopman operator theory to transform the complex, nonlinear system dynamics into a linear representation, enabling the application of convex optimization while representing the complex PU accurately. The deep Koopman model utilizes neural networks to learn the linear dynamics from experimental data, achieving a 45% improvement in open-loop prediction accuracy over conventional N4SID subspace identification. Both analyzed models were employed in the EMPC formulation that includes interpretable economic costs, such as energy consumption, material losses due to inadequate pasteurization, and actuator wear. The feasibility of EMPC is ensured using slack variables. The deep Koopman EMPC and N4SID EMPC are numerically validated on a nonlinear model of multivariable PU under external disturbance. The disturbances include feed pump fail-to-close scenario and the introduction of a cold batch to be pastuerized. These results demonstrate that the deep Koopmand EMPC achieves a 32% reduction in total economic cost compared to the N4SID baseline. This improvement is mainly due to the reductions in material losses and energy consumption. Furthermore, the steady-state operation via Koopman-based EMPC requires 10.2% less electrical energy. The results highlight the practical advantages of integrating deep Koopman representations with economic optimization to achieve resource-efficient control of thermal-intensive plants.
Abstract:Nonlinear dynamical systems with input delays pose significant challenges for prediction, estimation, and control due to their inherent complexity and the impact of delays on system behavior. Traditional linear control techniques often fail in these contexts, necessitating innovative approaches. This paper introduces a novel approach to approximate the Koopman operator using an LSTM-enhanced Deep Koopman model, enabling linear representations of nonlinear systems with time delays. By incorporating Long Short-Term Memory (LSTM) layers, the proposed framework captures historical dependencies and efficiently encodes time-delayed system dynamics into a latent space. Unlike traditional extended Dynamic Mode Decomposition (eDMD) approaches that rely on predefined dictionaries, the LSTM-enhanced Deep Koopman model is dictionary-free, which mitigates the problems with the underlying dynamics being known and incorporated into the dictionary. Quantitative comparisons with extended eDMD on a simulated system demonstrate highly significant performance gains in prediction accuracy in cases where the true nonlinear dynamics are unknown and achieve comparable results to eDMD with known dynamics of a system.
Abstract:This study evaluates the application of large language models (LLMs) for intent classification within a chatbot with predetermined responses designed for banking industry websites. Specifically, the research examines the effectiveness of fine-tuning SlovakBERT compared to employing multilingual generative models, such as Llama 8b instruct and Gemma 7b instruct, in both their pre-trained and fine-tuned versions. The findings indicate that SlovakBERT outperforms the other models in terms of in-scope accuracy and out-of-scope false positive rate, establishing it as the benchmark for this application.
Abstract:This paper introduces an approach for building a Named Entity Recognition (NER) model built upon a Bidirectional Encoder Representations from Transformers (BERT) architecture, specifically utilizing the SlovakBERT model. This NER model extracts address parts from data acquired from speech-to-text transcriptions. Due to scarcity of real data, a synthetic dataset using GPT API was generated. The importance of mimicking spoken language variability in this artificial data is emphasized. The performance of our NER model, trained solely on synthetic data, is evaluated using small real test dataset.