Abstract:In resource-constrained and low-latency settings, uncertainty estimates must be efficiently obtained. Deep Ensembles provide robust epistemic uncertainty (EU) but require training multiple full-size models. BatchEnsemble aims to deliver ensemble-like EU at far lower parameter and memory cost by applying learned rank-1 perturbations to a shared base network. We show that BatchEnsemble not only underperforms Deep Ensembles but closely tracks a single model baseline in terms of accuracy, calibration and out-of-distribution (OOD) detection on CIFAR10/10C/SVHN. A controlled study on MNIST finds members are near-identical in function and parameter space, indicating limited capacity to realize distinct predictive modes. Thus, BatchEnsemble behaves more like a single model than a true ensemble.
Abstract:We propose and investigate probabilistic guarantees for the adversarial robustness of classification algorithms. While traditional formal verification approaches for robustness are intractable and sampling-based approaches do not provide formal guarantees, our approach is able to efficiently certify a probabilistic relaxation of robustness. The key idea is to sample an $ε$-net and invoke a local robustness oracle on the sample. Remarkably, the size of the sample needed to achieve probably approximately global robustness guarantees is independent of the input dimensionality, the number of classes, and the learning algorithm itself. Our approach can, therefore, be applied even to large neural networks that are beyond the scope of traditional formal verification. Experiments empirically confirm that it characterizes robustness better than state-of-the-art sampling-based approaches and scales better than formal methods.