Abstract:Phishing continues to be one of the most prevalent attack vectors, making accurate classification of phishing URLs essential. Recently, large language models (LLMs) have demonstrated promising results in phishing URL detection. However, their reasoning capabilities that enabled such performance remain underexplored. To this end, in this paper, we propose a Least-to-Most prompting framework for phishing URL detection. In particular, we introduce an "answer sensitivity" mechanism that guides Least-to-Most's iterative approach to enhance reasoning and yield higher prediction accuracy. We evaluate our framework using three URL datasets and four state-of-the-art LLMs, comparing against a one-shot approach and a supervised model. We demonstrate that our framework outperforms the one-shot baseline while achieving performance comparable to that of the supervised model, despite requiring significantly less training data. Furthermore, our in-depth analysis highlights how the iterative reasoning enabled by Least-to-Most, and reinforced by our answer sensitivity mechanism, drives these performance gains. Overall, we show that this simple yet powerful prompting strategy consistently outperforms both one-shot and supervised approaches, despite requiring minimal training or few-shot guidance. Our experimental setup can be found in our Github repository github.sydney.edu.au/htri0928/least-to-most-phishing-detection.




Abstract:The early detection of potential failures in industrial machinery components is paramount for ensuring the reliability and safety of operations, thereby preserving Machine Condition Monitoring (MCM). This research addresses this imperative by introducing an innovative approach to Real-Time Acoustic Anomaly Detection. Our method combines semi-supervised temporal convolution with representation learning and a hybrid model strategy with Temporal Convolutional Networks (TCN) to handle various intricate anomaly patterns found in acoustic data effectively. The proposed model demonstrates superior performance compared to established research in the field, underscoring the effectiveness of this approach. Not only do we present quantitative evidence of its superiority, but we also employ visual representations, such as t-SNE plots, to further substantiate the model's efficacy.