Abstract:Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Our code will be publicly available upon acceptance.
Abstract:Crucial in disease analysis and surgical planning, manual segmentation of volumetric medical scans (e.g. MRI, CT) is laborious, error-prone, and challenging to master, while fully automatic algorithms can benefit from user feedback. Therefore, with the complementary power of the latest radiological AI foundation models and virtual reality (VR)'s intuitive data interaction, we propose SAMIRA, a novel conversational AI agent that assists users with localizing, segmenting, and visualizing 3D medical concepts in VR. Through speech-based interaction, the agent helps users understand radiological features, locate clinical targets, and generate segmentation masks that can be refined with just a few point prompts. The system also supports true-to-scale 3D visualization of segmented pathology to enhance patient-specific anatomical understanding. Furthermore, to determine the optimal interaction paradigm under near-far attention-switching for refining segmentation masks in an immersive, human-in-the-loop workflow, we compare VR controller pointing, head pointing, and eye tracking as input modes. With a user study, evaluations demonstrated a high usability score (SUS=90.0 $\pm$ 9.0), low overall task load, as well as strong support for the proposed VR system's guidance, training potential, and integration of AI in radiological segmentation tasks.