Abstract:Event stream data is a critical resource for fine-grained analysis across various domains, including financial transactions, system operations, and sports. In sports, it is actively used for fine-grained analyses such as quantifying player contributions and identifying tactical patterns. However, the reliability of these models is fundamentally limited by inherent data quality issues that cause logical inconsistencies (e.g., incorrect event ordering or missing events). To this end, this study proposes VERSA (Verified Event Data Format for Reliable Soccer Analytics), a systematic verification framework that ensures the integrity of event stream data within the soccer domain. VERSA is based on a state-transition model that defines valid event sequences, thereby enabling the automatic detection and correction of anomalous patterns within the event stream data. Notably, our examination of event data from the K League 1 (2024 season), provided by Bepro, detected that 18.81% of all recorded events exhibited logical inconsistencies. Addressing such integrity issues, our experiments demonstrate that VERSA significantly enhances cross-provider consistency, ensuring stable and unified data representation across heterogeneous sources. Furthermore, we demonstrate that data refined by VERSA significantly improves the robustness and performance of a downstream task called VAEP, which evaluates player contributions. These results highlight that the verification process is highly effective in increasing the reliability of data-driven analysis.




Abstract:Transfers play a pivotal role in shaping a football club's success, yet forecasting whether a transfer will succeed remains difficult due to the strong context-dependence of on-field performance. Existing evaluation practices often rely on static summary statistics or post-hoc value models, which fail to capture how a player's contribution adapts to a new tactical environment or different teammates. To address this gap, we introduce EventGPT, a player-conditioned, value-aware next-event prediction model built on a GPT-style autoregressive transformer. Our model treats match play as a sequence of discrete tokens, jointly learning to predict the next on-ball action's type, location, timing, and its estimated residual On-Ball Value (rOBV) based on the preceding context and player identity. A key contribution of this framework is the ability to perform counterfactual simulations. By substituting learned player embeddings into new event sequences, we can simulate how a player's behavioral distribution and value profile would change when placed in a different team or tactical structure. Evaluated on five seasons of Premier League event data, EventGPT outperforms existing sequence-based baselines in next-event prediction accuracy and spatial precision. Furthermore, we demonstrate the model's practical utility for transfer analysis through case studies-such as comparing striker performance across different systems and identifying stylistic replacements for specific roles-showing that our approach provides a principled method for evaluating transfer fit.