Abstract:This work presents an efficient algorithmic framework for real-time identification, classification, and evaluation of human physiotherapy exercises using mobile devices. The proposed method interprets a kinetic movement as a sequence of static poses, which are estimated from camera input using a pose-estimation neural network. Extracted body keypoints are transformed into trigonometric angle-based features and classified with lightweight supervised models to generate frame-level pose predictions and accuracy scores. To recognize full exercise movements and detect deviations from prescribed patterns, we employ a dynamic-programming scheme based on a modified Levenshtein distance algorithm, enabling robust sequence matching and localization of inaccuracies. The system operates entirely on the client side, ensuring scalability and real-time performance. Experimental evaluation demonstrates the effectiveness of the methodology and highlights its applicability to remote physiotherapy supervision and m-health applications.
Abstract:Parliamentary speech generation presents specific challenges for large language models beyond standard text generation tasks. Unlike general text generation, parliamentary speeches require not only linguistic quality but also political authenticity and ideological consistency. Current language models lack specialized training for parliamentary contexts, and existing evaluation methods focus on standard NLP metrics rather than political authenticity. To address this, we present ParliaBench, a benchmark for parliamentary speech generation. We constructed a dataset of speeches from UK Parliament to enable systematic model training. We introduce an evaluation framework combining computational metrics with LLM-as-a-judge assessments for measuring generation quality across three dimensions: linguistic quality, semantic coherence, and political authenticity. We propose two novel embedding-based metrics, Political Spectrum Alignment and Party Alignment, to quantify ideological positioning. We fine-tuned five large language models (LLMs), generated 28k speeches, and evaluated them using our framework, comparing baseline and fine-tuned models. Results show that fine-tuning produces statistically significant improvements across the majority of metrics and our novel metrics demonstrate strong discriminative power for political dimensions.