Abstract:Generative AI paraphrased text can be used for copyright infringement and the AI paraphrased content can deprive substantial revenue from original content creators. Despite this recent surge of malicious use of generative AI, there are few academic publications that research this threat. In this article, we demonstrate the ability of pattern-based similarity detection for AI paraphrased news recognition. We propose an algorithmic scheme, which is not limited to detect whether an article is an AI paraphrase, but, more importantly, to identify that the source of infringement is the ChatGPT. The proposed method is tested with a benchmark dataset specifically created for this task that incorporates real articles from BBC, incorporating a total of 2,224 articles across five different news categories, as well as 2,224 paraphrased articles created with ChatGPT. Results show that our pattern similarity-based method, that makes no use of deep learning, can detect ChatGPT assisted paraphrased articles at percentages 96.23% for accuracy, 96.25% for precision, 96.21% for sensitivity, 96.25% for specificity and 96.23% for F1 score.
Abstract:The paper presents a suspicious email detection model which incorporates enhanced feature selection. In the paper we proposed the use of feature selection strategies along with classification technique for terrorists email detection. The presented model focuses on the evaluation of machine learning algorithms such as decision tree (ID3), logistic regression, Na\"ive Bayes (NB), and Support Vector Machine (SVM) for detecting emails containing suspicious content. In the literature, various algorithms achieved good accuracy for the desired task. However, the results achieved by those algorithms can be further improved by using appropriate feature selection mechanisms. We have identified the use of a specific feature selection scheme that improves the performance of the existing algorithms.