Abstract:We present SymFlux, a novel deep learning framework that performs symbolic regression to identify Hamiltonian functions from their corresponding vector fields on the standard symplectic plane. SymFlux models utilize hybrid CNN-LSTM architectures to learn and output the symbolic mathematical expression of the underlying Hamiltonian. Training and validation are conducted on newly developed datasets of Hamiltonian vector fields, a key contribution of this work. Our results demonstrate the model's effectiveness in accurately recovering these symbolic expressions, advancing automated discovery in Hamiltonian mechanics.
Abstract:We present symbolic and numerical methods for computing Poisson brackets on the spaces of measures with positive densities of the plane, the 2-torus, and the 2-sphere. We apply our methods to compute symplectic areas of finite regions for the case of the 2-sphere, including an explicit example for Gaussian measures with positive densities.
Abstract:Convolutions are fundamental elements in deep learning architectures. Here, we present a theoretical framework for combining extrinsic and intrinsic approaches to manifold convolution through isometric embeddings into tori. In this way, we define a convolution operator for a manifold of arbitrary topology and dimension. We also explain geometric and topological conditions that make some local definitions of convolutions which rely on translating filters along geodesic paths on a manifold, computationally intractable. A result of Alan Turing from 1938 underscores the need for such a toric isometric embedding approach to achieve a global definition of convolution on computable, finite metric space approximations to a smooth manifold.
Abstract:We present a new implementation of anisotropic mean curvature flow for contour recognition. Our procedure couples the mean curvature flow of planar closed smooth curves, with an external field from a potential of point-wise charges. This coupling constrains the motion when the curve matches a picture placed as background. We include a stability criteria for our numerical approximation.