Abstract:We present SymFlux, a novel deep learning framework that performs symbolic regression to identify Hamiltonian functions from their corresponding vector fields on the standard symplectic plane. SymFlux models utilize hybrid CNN-LSTM architectures to learn and output the symbolic mathematical expression of the underlying Hamiltonian. Training and validation are conducted on newly developed datasets of Hamiltonian vector fields, a key contribution of this work. Our results demonstrate the model's effectiveness in accurately recovering these symbolic expressions, advancing automated discovery in Hamiltonian mechanics.