



Abstract:Advanced control strategies like Model Predictive Control (MPC) offer significant energy savings for HVAC systems but often require substantial engineering effort, limiting scalability. Reinforcement Learning (RL) promises greater automation and adaptability, yet its practical application in real-world residential settings remains largely undemonstrated, facing challenges related to safety, interpretability, and sample efficiency. To investigate these practical issues, we performed a direct comparison of an MPC and a model-based RL controller, with each controller deployed for a one-month period in an occupied house with a heat pump system in West Lafayette, Indiana. This investigation aimed to explore scalability of the chosen RL and MPC implementations while ensuring safety and comparability. The advanced controllers were evaluated against each other and against the existing controller. RL achieved substantial energy savings (22\% relative to the existing controller), slightly exceeding MPC's savings (20\%), albeit with modestly higher occupant discomfort. However, when energy savings were normalized for the level of comfort provided, MPC demonstrated superior performance. This study's empirical results show that while RL reduces engineering overhead, it introduces practical trade-offs in model accuracy and operational robustness. The key lessons learned concern the difficulties of safe controller initialization, navigating the mismatch between control actions and their practical implementation, and maintaining the integrity of online learning in a live environment. These insights pinpoint the essential research directions needed to advance RL from a promising concept to a truly scalable HVAC control solution.

Abstract:Building energy management (BEM) tasks require processing and learning from a variety of time-series data. Existing solutions rely on bespoke task- and data-specific models to perform these tasks, limiting their broader applicability. Inspired by the transformative success of Large Language Models (LLMs), Time-Series Foundation Models (TSFMs), trained on diverse datasets, have the potential to change this. Were TSFMs to achieve a level of generalizability across tasks and contexts akin to LLMs, they could fundamentally address the scalability challenges pervasive in BEM. To understand where they stand today, we evaluate TSFMs across four dimensions: (1) generalizability in zero-shot univariate forecasting, (2) forecasting with covariates for thermal behavior modeling, (3) zero-shot representation learning for classification tasks, and (4) robustness to performance metrics and varying operational conditions. Our results reveal that TSFMs exhibit \emph{limited} generalizability, performing only marginally better than statistical models on unseen datasets and modalities for univariate forecasting. Similarly, inclusion of covariates in TSFMs does not yield performance improvements, and their performance remains inferior to conventional models that utilize covariates. While TSFMs generate effective zero-shot representations for downstream classification tasks, they may remain inferior to statistical models in forecasting when statistical models perform test-time fitting. Moreover, TSFMs forecasting performance is sensitive to evaluation metrics, and they struggle in more complex building environments compared to statistical models. These findings underscore the need for targeted advancements in TSFM design, particularly their handling of covariates and incorporating context and temporal dynamics into prediction mechanisms, to develop more adaptable and scalable solutions for BEM.

Abstract:In single-zone multi-room houses (SZMRHs), temperature controls rely on a single probe near the thermostat, resulting in temperature discrepancies that cause thermal discomfort and energy waste. Augmenting smart thermostats (STs) with per-room sensors has gained acceptance by major ST manufacturers. This paper leverages additional sensory information to empirically characterize the services provided by buildings, including thermal comfort, energy efficiency, and demand response (DR). Utilizing room-level time-series data from 1,000 houses, metadata from 110,000 houses across the United States, and data from two real-world testbeds, we examine the limitations of SZMRHs and explore the potential of remote sensors. We discovered that comfortable DR durations (CDRDs) for rooms are typically 70% longer or 40% shorter than for the room with the thermostat. When averaging, rooms at the control temperature's bounds are typically deviated around -3{\deg}F to 2.5{\deg}F from the average. Moreover, in 95\% of houses, we identified rooms experiencing notably higher solar gains compared to the rest of the rooms, while 85% and 70% of houses demonstrated lower heat input and poor insulation, respectively. Lastly, it became evident that the consumption of cooling energy escalates with the increase in the number of sensors, whereas heating usage experiences fluctuations ranging from -19% to +25% This study serves as a benchmark for assessing the thermal comfort and DR services in the existing housing stock, while also highlighting the energy efficiency impacts of sensing technologies. Our approach sets the stage for more granular, precise control strategies of SZMRHs.
