Abstract:Digital twins (DTs) are improving water distribution systems by using real-time data, analytics, and prediction models to optimize operations. This paper presents a DT platform designed for a Spanish water supply network, utilizing Long Short-Term Memory (LSTM) networks to predict water consumption. However, machine learning models are vulnerable to adversarial attacks, such as the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). These attacks manipulate critical model parameters, injecting subtle distortions that degrade forecasting accuracy. To further exploit these vulnerabilities, we introduce a Learning Automata (LA) and Random LA-based approach that dynamically adjusts perturbations, making adversarial attacks more difficult to detect. Experimental results show that this approach significantly impacts prediction reliability, causing the Mean Absolute Percentage Error (MAPE) to rise from 26% to over 35%. Moreover, adaptive attack strategies amplify this effect, highlighting cybersecurity risks in AI-driven DTs. These findings emphasize the urgent need for robust defenses, including adversarial training, anomaly detection, and secure data pipelines.
Abstract:Digital twins (DTs) help improve real-time monitoring and decision-making in water distribution systems. However, their connectivity makes them easy targets for cyberattacks such as scanning, denial-of-service (DoS), and unauthorized access. Small and medium-sized enterprises (SMEs) that manage these systems often do not have enough budget or staff to build strong cybersecurity teams. To solve this problem, we present a Virtual Cybersecurity Department (VCD), an affordable and automated framework designed for SMEs. The VCD uses open-source tools like Zabbix for real-time monitoring, Suricata for network intrusion detection, Fail2Ban to block repeated login attempts, and simple firewall settings. To improve threat detection, we also add a machine-learning-based IDS trained on the OD-IDS2022 dataset using an improved ensemble model. This model detects cyber threats such as brute-force attacks, remote code execution (RCE), and network flooding, with 92\% accuracy and fewer false alarms. Our solution gives SMEs a practical and efficient way to secure water systems using low-cost and easy-to-manage tools.