Abstract:Effective diabetes management relies heavily on the continuous monitoring of blood glucose levels, traditionally achieved through invasive and uncomfortable methods. While various non-invasive techniques have been explored, such as optical, microwave, and electrochemical approaches, none have effectively supplanted these invasive technologies due to issues related to complexity, accuracy, and cost. In this study, we present a transformative and straightforward method that utilizes voice analysis to predict blood glucose levels. Our research investigates the relationship between fluctuations in blood glucose and vocal characteristics, highlighting the influence of blood vessel dynamics during voice production. By applying advanced machine learning algorithms, we analyzed vocal signal variations and established a significant correlation with blood glucose levels. We developed a predictive model using artificial intelligence, based on voice recordings and corresponding glucose measurements from participants, utilizing logistic regression and Ridge regularization. Our findings indicate that voice analysis may serve as a viable non-invasive alternative for glucose monitoring. This innovative approach not only has the potential to streamline and reduce the costs associated with diabetes management but also aims to enhance the quality of life for individuals living with diabetes by providing a painless and user-friendly method for monitoring blood sugar levels.
Abstract:Addressing heart failure (HF) as a prevalent global health concern poses difficulties in implementing innovative approaches for enhanced patient care. Predicting mortality rates in HF patients, in particular, is difficult yet critical, necessitating individualized care, proactive management, and enabling educated decision-making to enhance outcomes. Recently, the significance of voice biomarkers coupled with Machine Learning (ML) has surged, demonstrating remarkable efficacy, particularly in predicting heart failure. The synergy of voice analysis and ML algorithms provides a non-invasive and easily accessible means to evaluate patients' health. However, there is a lack of voice biomarkers for predicting mortality rates among heart failure patients with standardized speech protocols. Here, we demonstrate a powerful and effective ML model for predicting mortality rates in hospitalized HF patients through the utilization of voice biomarkers. By seamlessly integrating voice biomarkers into routine patient monitoring, this strategy has the potential to improve patient outcomes, optimize resource allocation, and advance patient-centered HF management. In this study, a Machine Learning system, specifically a logistic regression model, is trained to predict patients' 5-year mortality rates using their speech as input. The model performs admirably and consistently, as demonstrated by cross-validation and statistical approaches (p-value < 0.001). Furthermore, integrating NT-proBNP, a diagnostic biomarker in HF, improves the model's predictive accuracy substantially.
Abstract:The diverse spectrum of material characteristics including band gap, mechanical moduli, color, phonon and electronic density of states, along with catalytic and surface properties are intricately intertwined with the atomic structure and the corresponding interatomic bond-lengths. This interconnection extends to the manifestation of interplanar spacings within a crystalline lattice. Analysis of these interplanar spacings and the comprehension of any deviations, whether it be lattice compression or expansion, commonly referred to as strain, hold paramount significance in unraveling various unknowns within the field. Transmission Electron Microscopy (TEM) is widely used to capture atomic-scale ordering, facilitating direct investigation of interplanar spacings. However, creating critical contour maps for visualizing and interpreting lattice stresses in TEM images remains a challenging task. Here we developed a Python code for TEM image processing that can handle a wide range of materials including nanoparticles, 2D materials, pure crystals and solid solutions. This algorithm converts local differences in interplanar spacings into contour maps allowing for a visual representation of lattice expansion and compression. The tool is very generic and can significantly aid in analyzing material properties using TEM images, allowing for a more in-depth exploration of the underlying science behind strain engineering via strain contour maps at the atomic level.
Abstract:Road traffic accidents pose a significant global public health concern, leading to injuries, fatalities, and vehicle damage. Approximately 1,3 million people lose their lives daily due to traffic accidents [World Health Organization, 2022]. Addressing this issue requires accurate traffic law violation detection systems to ensure adherence to regulations. The integration of Artificial Intelligence algorithms, leveraging machine learning and computer vision, has facilitated the development of precise traffic rule enforcement. This paper illustrates how computer vision and machine learning enable the creation of robust algorithms for detecting various traffic violations. Our model, capable of identifying six common traffic infractions, detects red light violations, illegal use of breakdown lanes, violations of vehicle following distance, breaches of marked crosswalk laws, illegal parking, and parking on marked crosswalks. Utilizing online traffic footage and a self-mounted on-dash camera, we apply the YOLOv5 algorithm's detection module to identify traffic agents such as cars, pedestrians, and traffic signs, and the strongSORT algorithm for continuous interframe tracking. Six discrete algorithms analyze agents' behavior and trajectory to detect violations. Subsequently, an Identification Module extracts vehicle ID information, such as the license plate, to generate violation notices sent to relevant authorities.