Abstract:In this study, we explore the fine-tuning of Large Language Models (LLMs) to better support policymakers in their crucial work of understanding, analyzing, and crafting legal regulations. To equip the model with a deep understanding of legal texts, we curated a supervised dataset tailored to the specific needs of the legal domain. Additionally, we integrated the Retrieval-Augmented Generation (RAG) method, enabling the LLM to access and incorporate up-to-date legal knowledge from external sources. This combination of fine-tuning and RAG-based augmentation results in a tool that not only processes legal information but actively assists policymakers in interpreting regulations and drafting new ones that align with current needs. The results demonstrate that this approach can significantly enhance the effectiveness of legal research and regulation development, offering a valuable resource in the ever-evolving field of law.
Abstract:Batik, a unique blend of art and craftsmanship, is a distinct artistic and technological creation for Indonesian society. Research on batik motifs is primarily focused on classification. However, further studies may extend to the synthesis of batik patterns. Generative Adversarial Networks (GANs) have been an important deep learning model for generating synthetic data, but often face challenges in the stability and consistency of results. This research focuses on the use of StyleGAN2-Ada and Diffusion techniques to produce realistic and high-quality synthetic batik patterns. StyleGAN2-Ada is a variation of the GAN model that separates the style and content aspects in an image, whereas diffusion techniques introduce random noise into the data. In the context of batik, StyleGAN2-Ada and Diffusion are used to produce realistic synthetic batik patterns. This study also made adjustments to the model architecture and used a well-curated batik dataset. The main goal is to assist batik designers or craftsmen in producing unique and quality batik motifs with efficient production time and costs. Based on qualitative and quantitative evaluations, the results show that the model tested is capable of producing authentic and quality batik patterns, with finer details and rich artistic variations. The dataset and code can be accessed here:https://github.com/octadion/diffusion-stylegan2-ada-pytorch