Abstract:Large language models (LLMs) achieve impressive abilities in numerous domains, but exhibit inconsistent performance in response to minor input changes. Rather than view this as a drawback, in this paper we introduce a novel method for leveraging models' inconsistency to boost Pass@k performance. Specifically, we present a "Variator" agent that generates k variants of a given task and submits one candidate solution for each one. Our variant generation approach is applicable to a wide range of domains as it is task agnostic and compatible with free-form inputs. We demonstrate the efficacy of our agent theoretically using a probabilistic model of the inconsistency effect, and show empirically that it outperforms the baseline on the APPS dataset. Furthermore, we establish that inconsistency persists even in frontier reasoning models across coding and cybersecurity domains, suggesting our method is likely to remain relevant for future model generations.
Abstract:Following the rapid increase in Artificial Intelligence (AI) capabilities in recent years, the AI community has voiced concerns regarding possible safety risks. To support decision-making on the safe use and development of AI systems, there is a growing need for high-quality evaluations of dangerous model capabilities. While several attempts to provide such evaluations have been made, a clear definition of what constitutes a "good evaluation" has yet to be agreed upon. In this practitioners' perspective paper, we present a set of best practices for safety evaluations, drawing on prior work in model evaluation and illustrated through cybersecurity examples. We first discuss the steps of the initial thought process, which connects threat modeling to evaluation design. Then, we provide the characteristics and parameters that make an evaluation useful. Finally, we address additional considerations as we move from building specific evaluations to building a full and comprehensive evaluation suite.