Abstract:Whole-slide images (WSIs) from cancer patients contain rich information that can be used for medical diagnosis or to follow treatment progress. To automate their analysis, numerous deep learning methods based on convolutional neural networks and Vision Transformers have been developed and have achieved strong performance in segmentation and classification tasks. However, due to the large size and complex cellular organization of WSIs, these models rely on patch-based representations, losing vital tissue-level context. We propose using scalable Graph Transformers on a full-WSI cell graph for classification. We evaluate this methodology on a challenging task: the classification of healthy versus tumor epithelial cells in cutaneous squamous cell carcinoma (cSCC), where both cell types exhibit very similar morphologies and are therefore difficult to differentiate for image-based approaches. We first compared image-based and graph-based methods on a single WSI. Graph Transformer models SGFormer and DIFFormer achieved balanced accuracies of $85.2 \pm 1.5$ ($\pm$ standard error) and $85.1 \pm 2.5$ in 3-fold cross-validation, respectively, whereas the best image-based method reached $81.2 \pm 3.0$. By evaluating several node feature configurations, we found that the most informative representation combined morphological and texture features as well as the cell classes of non-epithelial cells, highlighting the importance of the surrounding cellular context. We then extended our work to train on several WSIs from several patients. To address the computational constraints of image-based models, we extracted four $2560 \times 2560$ pixel patches from each image and converted them into graphs. In this setting, DIFFormer achieved a balanced accuracy of $83.6 \pm 1.9$ (3-fold cross-validation), while the state-of-the-art image-based model CellViT256 reached $78.1 \pm 0.5$.
Abstract:Background: Automated podocyte foot process quantification is vital for kidney research, but the established "Automatic Morphological Analysis of Podocytes" (AMAP) method is hindered by high computational demands, a lack of a user interface, and Linux dependency. We developed AMAP-APP, a cross-platform desktop application designed to overcome these barriers. Methods: AMAP-APP optimizes efficiency by replacing intensive instance segmentation with classic image processing while retaining the original semantic segmentation model. It introduces a refined Region of Interest (ROI) algorithm to improve precision. Validation involved 365 mouse and human images (STED and confocal), benchmarking performance against the original AMAP via Pearson correlation and Two One-Sided T-tests (TOST). Results: AMAP-APP achieved a 147-fold increase in processing speed on consumer hardware. Morphometric outputs (area, perimeter, circularity, and slit diaphragm density) showed high correlation (r>0.90) and statistical equivalence (TOST P<0.05) to the original method. Additionally, the new ROI algorithm demonstrated superior accuracy compared to the original, showing reduced deviation from manual delineations. Conclusion: AMAP-APP democratizes deep learning-based podocyte morphometry. By eliminating the need for high-performance computing clusters and providing a user-friendly interface for Windows, macOS, and Linux, it enables widespread adoption in nephrology research and potential clinical diagnostics.
Abstract:Isolated rapid eye movement sleep behavior disorder (iRBD) is a major prodromal marker of $α$-synucleinopathies, often preceding the clinical onset of Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. While wrist-worn actimeters hold significant potential for detecting RBD in large-scale screening efforts by capturing abnormal nocturnal movements, they become inoperable without a reliable and efficient analysis pipeline. This study presents ActiTect, a fully automated, open-source machine learning tool to identify RBD from actigraphy recordings. To ensure generalizability across heterogeneous acquisition settings, our pipeline includes robust preprocessing and automated sleep-wake detection to harmonize multi-device data and extract physiologically interpretable motion features characterizing activity patterns. Model development was conducted on a cohort of 78 individuals, yielding strong discrimination under nested cross-validation (AUROC = 0.95). Generalization was confirmed on a blinded local test set (n = 31, AUROC = 0.86) and on two independent external cohorts (n = 113, AUROC = 0.84; n = 57, AUROC = 0.94). To assess real-world robustness, leave-one-dataset-out cross-validation across the internal and external cohorts demonstrated consistent performance (AUROC range = 0.84-0.89). A complementary stability analysis showed that key predictive features remained reproducible across datasets, supporting the final pooled multi-center model as a robust pre-trained resource for broader deployment. By being open-source and easy to use, our tool promotes widespread adoption and facilitates independent validation and collaborative improvements, thereby advancing the field toward a unified and generalizable RBD detection model using wearable devices.