Abstract:Modeling the dynamics of micro-mobility vehicles (MMV) is becoming increasingly important for training autonomous vehicle systems and building urban traffic simulations. However, mainstream tools rely on variants of the Kinematic Bicycle Model (KBM) or mode-specific physics that miss tire slip, load transfer, and rider/vehicle lean. To our knowledge, no unified, physics-based model captures these dynamics across the full range of common MMVs and wheel layouts. We propose the "Generalized Micro-mobility Model" (GM3), a tire-level formulation based on the tire brush representation that supports arbitrary wheel configurations, including single/double track and multi-wheel platforms. We introduce an interactive model-agnostic simulation framework that decouples vehicle/layout specification from dynamics to compare the GM3 with the KBM and other models, consisting of fixed step RK4 integration, human-in-the-loop and scripted control, real-time trajectory traces and logging for analysis. We also empirically validate the GM3 on the Stanford Drone Dataset's deathCircle (roundabout) scene for biker, skater, and cart classes.
Abstract:We introduce AgreeMate, a framework for training Large Language Models (LLMs) to perform strategic price negotiations through natural language. We apply recent advances to a negotiation setting where two agents (i.e. buyer or seller) use natural language to bargain on goods using coarse actions. Specifically, we present the performance of Large Language Models when used as agents within a decoupled (modular) bargaining architecture. We demonstrate that using prompt engineering, fine-tuning, and chain-of-thought prompting enhances model performance, as defined by novel metrics. We use attention probing to show model attention to semantic relationships between tokens during negotiations.