Abstract:Large language models (LLMs) are increasingly used to generate distractors for multiple-choice questions (MCQs), especially in domains like math education. However, existing approaches are limited in ensuring that the generated distractors are consistent with common student errors. We propose LookAlike, a method that improves error-distractor consistency via preference optimization. Our two main innovations are: (a) mining synthetic preference pairs from model inconsistencies, and (b) alternating supervised fine-tuning (SFT) with Direct Preference Optimization (DPO) to stabilize training. Unlike prior work that relies on heuristics or manually annotated preference data, LookAlike uses its own generation inconsistencies as dispreferred samples, thus enabling scalable and stable training. Evaluated on a real-world dataset of 1,400+ math MCQs, LookAlike achieves 51.6% accuracy in distractor generation and 57.2% in error generation under LLM-as-a-judge evaluation, outperforming an existing state-of-the-art method (45.6% / 47.7%). These improvements highlight the effectiveness of preference-based regularization and inconsistency mining for generating consistent math MCQ distractors at scale.
Abstract:Finetuning large language models (LLMs) in federated learning (FL) settings has become important as it allows resource-constrained devices to finetune a model using private data. However, finetuning LLMs using backpropagation requires excessive memory (especially from intermediate activations) for resource-constrained devices. While Forward-mode Auto-Differentiation (AD) can reduce memory footprint from activations, we observe that directly applying it to LLM finetuning results in slow convergence and poor accuracy. This work introduces Spry, an FL algorithm that splits trainable weights of an LLM among participating clients, such that each client computes gradients using Forward-mode AD that are closer estimates of the true gradients. Spry achieves a low memory footprint, high accuracy, and fast convergence. We theoretically show that the global gradients in Spry are unbiased estimates of true global gradients for homogeneous data distributions across clients, while heterogeneity increases bias of the estimates. We also derive Spry's convergence rate, showing that the gradients decrease inversely proportional to the number of FL rounds, indicating the convergence up to the limits of heterogeneity. Empirically, Spry reduces the memory footprint during training by 1.4-7.1$\times$ in contrast to backpropagation, while reaching comparable accuracy, across a wide range of language tasks, models, and FL settings. Spry reduces the convergence time by 1.2-20.3$\times$ and achieves 5.2-13.5\% higher accuracy against state-of-the-art zero-order methods. When finetuning Llama2-7B with LoRA, compared to the peak memory usage of 33.9GB of backpropagation, Spry only consumes 6.2GB of peak memory. For OPT13B, the reduction is from 76.5GB to 10.8GB. Spry makes feasible previously impossible FL deployments on commodity mobile and edge devices. Source code is available at https://github.com/Astuary/Spry.