Abstract:Skin lesions are conditions that appear on a patient due to many different reasons. One of these can be because of an abnormal growth in skin tissue, defined as cancer. This disease plagues more than 14.1 million patients and had been the cause of more than 8.2 million deaths, worldwide. Therefore, the construction of a classification model for 12 lesions, including Malignant Melanoma and Basal Cell Carcinoma, is proposed. Furthermore, in this work, it is used a ResNet-152 architecture, which was trained over 3,797 images, later augmented by a factor of 29 times, using positional, scale, and lighting transformations. Finally, the network was tested with 956 images and achieve an area under the curve (AUC) of 0.96 for Melanoma and 0.91 for Basal Cell Carcinoma.
Abstract:The Brazilian court system is currently the most clogged up judiciary system in the world. Thousands of lawsuit cases reach the supreme court every day. These cases need to be analyzed in order to be associated to relevant tags and allocated to the right team. Most of the cases reach the court as raster scanned documents with widely variable levels of quality. One of the first steps for the analysis is to classify these documents. In this paper we present a Bidirectional Long Short-Term Memory network (Bi-LSTM) to classify these pieces of legal document.