Abstract:Scientific Natural Language Inference (NLI) is the task of predicting the semantic relation between a pair of sentences extracted from research articles. Existing datasets for this task are derived from various computer science (CS) domains, whereas non-CS domains are completely ignored. In this paper, we introduce a novel evaluation benchmark for scientific NLI, called MISMATCHED. The new MISMATCHED benchmark covers three non-CS domains-PSYCHOLOGY, ENGINEERING, and PUBLIC HEALTH, and contains 2,700 human annotated sentence pairs. We establish strong baselines on MISMATCHED using both Pre-trained Small Language Models (SLMs) and Large Language Models (LLMs). Our best performing baseline shows a Macro F1 of only 78.17% illustrating the substantial headroom for future improvements. In addition to introducing the MISMATCHED benchmark, we show that incorporating sentence pairs having an implicit scientific NLI relation between them in model training improves their performance on scientific NLI. We make our dataset and code publicly available on GitHub.
Abstract:Knowledge graphs (KGs) are increasingly utilized for data integration, representation, and visualization. While KG population is critical, it is often costly, especially when data must be extracted from unstructured text in natural language, which presents challenges, such as ambiguity and complex interpretations. Large Language Models (LLMs) offer promising capabilities for such tasks, excelling in natural language understanding and content generation. However, their tendency to ``hallucinate'' can produce inaccurate outputs. Despite these limitations, LLMs offer rapid and scalable processing of natural language data, and with prompt engineering and fine-tuning, they can approximate human-level performance in extracting and structuring data for KGs. This study investigates LLM effectiveness for the KG population, focusing on the Enslaved.org Hub Ontology. In this paper, we report that compared to the ground truth, LLM's can extract ~90% of triples, when provided a modular ontology as guidance in the prompts.