



Abstract:As modern neural networks become increasingly memory-bound, inference throughput is limited by DRAM bandwidth rather than compute. We present Arithmetic-Intensity-Aware Quantization (AIQ), a mixed precision quantization framework that chooses per-layer bit-widths to maximize arithmetic intensity (AI) while minimizing accuracy loss. AIQ is a post-training quantization method that uses search algorithms over per-layer quantization schemes to minimize a weighted loss over AI and accuracy. On ResNet-20/CIFAR-10, AIQ increases AI by ~50% over an FP32 baseline while keeping test accuracy within ~1 percentage point, and outperforming global uniform quantization schemes. On a memory-bound MobileNetV2 architecture, AIQ configurations give a 1.66x higher throughput than the FP32 baseline while keeping test accuracy within 1 percentage point. We also find that AIQ naturally quantizes larger layers more aggressively.




Abstract:DNA-Encoded Libraries (DEL) are combinatorial small molecule libraries that offer an efficient way to characterize diverse chemical spaces. Selection experiments using DELs are pivotal to drug discovery efforts, enabling high-throughput screens for hit finding. However, limited availability of public DEL datasets hinders the advancement of computational techniques designed to process such data. To bridge this gap, we present KinDEL, one of the first large, publicly available DEL datasets on two kinases: Mitogen-Activated Protein Kinase 14 (MAPK14) and Discoidin Domain Receptor Tyrosine Kinase 1 (DDR1). Interest in this data modality is growing due to its ability to generate extensive supervised chemical data that densely samples around select molecular structures. Demonstrating one such application of the data, we benchmark different machine learning techniques to develop predictive models for hit identification; in particular, we highlight recent structure-based probabilistic approaches. Finally, we provide biophysical assay data, both on- and off-DNA, to validate our models on a smaller subset of molecules. Data and code for our benchmarks can be found at: https://github.com/insitro/kindel.