Abstract:Recent advancements in speech encoders have drawn attention due to their integration with Large Language Models for various speech tasks. While most research has focused on either causal or full-context speech encoders, there's limited exploration to effectively handle both streaming and non-streaming applications, while achieving state-of-the-art performance. We introduce DuRep, a Dual-mode Speech Representation learning setup, which enables a single speech encoder to function efficiently in both offline and online modes without additional parameters or mode-specific adjustments, across downstream tasks. DuRep-200M, our 200M parameter dual-mode encoder, achieves 12% and 11.6% improvements in streaming and non-streaming modes, over baseline encoders on Multilingual ASR. Scaling this approach to 2B parameters, DuRep-2B sets new performance benchmarks across ASR and non-ASR tasks. Our analysis reveals interesting trade-offs between acoustic and semantic information across encoder layers.
Abstract:Multilingual ASR technology simplifies model training and deployment, but its accuracy is known to depend on the availability of language information at runtime. Since language identity is seldom known beforehand in real-world scenarios, it must be inferred on-the-fly with minimum latency. Furthermore, in voice-activated smart assistant systems, language identity is also required for downstream processing of ASR output. In this paper, we introduce streaming, end-to-end, bilingual systems that perform both ASR and language identification (LID) using the recurrent neural network transducer (RNN-T) architecture. On the input side, embeddings from pretrained acoustic-only LID classifiers are used to guide RNN-T training and inference, while on the output side, language targets are jointly modeled with ASR targets. The proposed method is applied to two language pairs: English-Spanish as spoken in the United States, and English-Hindi as spoken in India. Experiments show that for English-Spanish, the bilingual joint ASR-LID architecture matches monolingual ASR and acoustic-only LID accuracies. For the more challenging (owing to within-utterance code switching) case of English-Hindi, English ASR and LID metrics show degradation. Overall, in scenarios where users switch dynamically between languages, the proposed architecture offers a promising simplification over running multiple monolingual ASR models and an LID classifier in parallel.