Abstract:Introduction: This study provides a comprehensive performance assessment of vision-language models (VLMs) against established convolutional neural networks (CNNs) and classic machine learning models (CMLs) for computer-aided detection (CADe) and computer-aided diagnosis (CADx) of colonoscopy polyp images. Method: We analyzed 2,258 colonoscopy images with corresponding pathology reports from 428 patients. We preprocessed all images using standardized techniques (resizing, normalization, and augmentation) and implemented a rigorous comparative framework evaluating 11 distinct models: ResNet50, 4 CMLs (random forest, support vector machine, logistic regression, decision tree), two specialized contrastive vision language encoders (CLIP, BiomedCLIP), and three general-purpose VLMs ( GPT-4 Gemini-1.5-Pro, Claude-3-Opus). Our performance assessment focused on two clinical tasks: polyp detection (CADe) and classification (CADx). Result: In polyp detection, ResNet50 achieved the best performance (F1: 91.35%, AUROC: 0.98), followed by BiomedCLIP (F1: 88.68%, AUROC: [AS1] ). GPT-4 demonstrated comparable effectiveness to traditional machine learning approaches (F1: 81.02%, AUROC: [AS2] ), outperforming other general-purpose VLMs. For polyp classification, performance rankings remained consistent but with lower overall metrics. ResNet50 maintained the highest efficacy (weighted F1: 74.94%), while GPT-4 demonstrated moderate capability (weighted F1: 41.18%), significantly exceeding other VLMs (Claude-3-Opus weighted F1: 25.54%, Gemini 1.5 Pro weighted F1: 6.17%). Conclusion: CNNs remain superior for both CADx and CADe tasks. However, VLMs like BioMedCLIP and GPT-4 may be useful for polyp detection tasks where training CNNs is not feasible.
Abstract:Generative Adversarial Networks (GANs) represent a promising class of generative networks that combine neural networks with game theory. From generating realistic images and videos to assisting musical creation, GANs are transforming many fields of arts and sciences. However, their application to healthcare has not been fully realized, more specifically in generating electronic health records (EHR) data. In this paper, we propose a framework for exploring the value of GANs in the context of continuous laboratory time series data. We devise an unsupervised evaluation method that measures the predictive power of synthetic laboratory test time series. Further, we show that when it comes to predicting the impact of drug exposure on laboratory test data, incorporating representation learning of the training cohorts prior to training GAN models is beneficial.