Abstract:The transition from 5G networks to 6G highlights a significant demand for machine learning (ML). Deep learning models, in particular, have seen wide application in mobile networking and communications to support advanced services in emerging wireless environments, such as smart healthcare, smart grids, autonomous vehicles, aerial platforms, digital twins, and the metaverse. The rapid expansion of Internet-of-Things (IoT) devices, many with limited computational capabilities, has accelerated the development of tiny machine learning (TinyML) and resource-efficient ML approaches for cost-effective services. However, the deployment of large-scale machine learning (LargeML) solutions require major computing resources and complex management strategies to support extensive IoT services and ML-generated content applications. Consequently, the integration of TinyML and LargeML is projected as a promising approach for future seamless connectivity and efficient resource management. Although the integration of TinyML and LargeML shows abundant potential, several challenges persist, including performance optimization, practical deployment strategies, effective resource management, and security considerations. In this survey, we review and analyze the latest research aimed at enabling the integration of TinyML and LargeML models for the realization of smart services and applications in future 6G networks and beyond. The paper concludes by outlining critical challenges and identifying future research directions for the holistic integration of TinyML and LargeML in next-generation wireless networks.
Abstract:This work considers the multihop multiple-input multiple-output relay network under short-packet communications to facilitate not only ultra-reliability but also low-latency communications. We assume that the transmit antenna selection (TAS) scheme is utilized at the transmit side, whereas either selection combining (SC) or maximum ratio combining (MRC) is leveraged at the receive side to achieve diversity gains. For quasi-static Rayleigh fading channels and the finite-blocklength regime, we derive the approximate closed-form expressions of the end-to-end (e2e) block error rate (BLER) for both the TAS/MRC and TAS/SC schemes. The asymptotic performance in the high signal-to-noise ratio regime is derived, from which the comparison of TAS/MRC and TAS/SC schemes in terms of the diversity order, e2e BLER loss, and SNR gap is provided. The e2e latency and throughputs are also analyzed for the considered schemes. The correctness of our analysis is confirmed via Monte Carlo simulations.
Abstract:Current network access infrastructures are characterized by heterogeneity, low latency, high throughput, and high computational capability, enabling massive concurrent connections and various services. Unfortunately, this design does not pay significant attention to mobile services in underserved areas. In this context, the use of aerial radio access networks (ARANs) is a promising strategy to complement existing terrestrial communication systems. Involving airborne components such as unmanned aerial vehicles, drones, and satellites, ARANs can quickly establish a flexible access infrastructure on demand. ARANs are expected to support the development of seamless mobile communication systems toward a comprehensive sixth-generation (6G) global access infrastructure. This paper provides an overview of recent studies regarding ARANs in the literature. First, we investigate related work to identify areas for further exploration in terms of recent knowledge advancements and analyses. Second, we define the scope and methodology of this study. Then, we describe ARAN architecture and its fundamental features for the development of 6G networks. In particular, we analyze the system model from several perspectives, including transmission propagation, energy consumption, communication latency, and network mobility. Furthermore, we introduce technologies that enable the success of ARAN implementations in terms of energy replenishment, operational management, and data delivery. Subsequently, we discuss application scenarios envisioned for these technologies. Finally, we highlight ongoing research efforts and trends toward 6G ARANs.