Abstract:Recent recommender systems increasingly leverage embeddings from large pre-trained language models (PLMs). However, such embeddings exhibit two key limitations: (1) PLMs are not explicitly optimized to produce structured and discriminative embedding spaces, and (2) their representations remain overly generic, often failing to capture the domain-specific semantics crucial for recommendation tasks. We present EncodeRec, an approach designed to align textual representations with recommendation objectives while learning compact, informative embeddings directly from item descriptions. EncodeRec keeps the language model parameters frozen during recommender system training, making it computationally efficient without sacrificing semantic fidelity. Experiments across core recommendation benchmarks demonstrate its effectiveness both as a backbone for sequential recommendation models and for semantic ID tokenization, showing substantial gains over PLM-based and embedding model baselines. These results underscore the pivotal role of embedding adaptation in bridging the gap between general-purpose language models and practical recommender systems.
Abstract:As machine learning (ML) systems increasingly impact critical sectors such as hiring, financial risk assessments, and criminal justice, the imperative to ensure fairness has intensified due to potential negative implications. While much ML fairness research has focused on enhancing training data and processes, addressing the outputs of already deployed systems has received less attention. This paper introduces 'BiasGuard', a novel approach designed to act as a fairness guardrail in production ML systems. BiasGuard leverages Test-Time Augmentation (TTA) powered by Conditional Generative Adversarial Network (CTGAN), a cutting-edge generative AI model, to synthesize data samples conditioned on inverted protected attribute values, thereby promoting equitable outcomes across diverse groups. This method aims to provide equal opportunities for both privileged and unprivileged groups while significantly enhancing the fairness metrics of deployed systems without the need for retraining. Our comprehensive experimental analysis across diverse datasets reveals that BiasGuard enhances fairness by 31% while only reducing accuracy by 0.09% compared to non-mitigated benchmarks. Additionally, BiasGuard outperforms existing post-processing methods in improving fairness, positioning it as an effective tool to safeguard against biases when retraining the model is impractical.