Abstract:The 6G wireless aims at the Tb/s peak data rates are expected, a sub-millisecond latency, massive Internet of Things/vehicle connectivity, which requires sustainable access to audio over the air and energy-saving functionality. Cognitive Radio Networks CCNs help in alleviating the problem of spectrum scarcity, but classical sensing and allocation are still energy-consumption intensive, and sensitive to rapid spectrum variations. Our framework which centers on AI driven green CRN aims at integrating deep reinforcement learning (DRL) with transfer learning, energy harvesting (EH), reconfigurable intelligent surfaces (RIS) with other light-weight genetic refinement operations that optimally combine sensing timelines, transmit power, bandwidth distribution and RIS phase selection. Compared to two baselines, the utilization of MATLAB + NS-3 under dense loads, a traditional CRN with energy sensing under fixed policies, and a hybrid CRN with cooperative sensing under heuristic distribution of resource, there are (25-30%) fewer energy reserves used, sensing AUC greater than 0.90 and +6-13 p.p. higher PDR. The integrated framework is easily scalable to large IoT and vehicular applications, and it provides a feasible and sustainable roadmap to 6G CRNs. Index Terms--Cognitive Radio Networks (CRNs), 6G, Green Communication, Energy Efficiency, Deep Reinforcement Learning (DRL), Spectrum Sensing, RIS, Energy Harvesting, QoS, IoT.
Abstract:As healthcare systems increasingly adopt advanced wireless networks and connected devices, securing medical applications has become critical. The integration of Internet of Medical Things devices, such as robotic surgical tools, intensive care systems, and wearable monitors has enhanced patient care but introduced serious security risks. Cyberattacks on these devices can lead to life threatening consequences, including surgical errors, equipment failure, and data breaches. While the ITU IMT 2030 vision highlights 6G's transformative role in healthcare through AI and cloud integration, it also raises new security concerns. This paper explores how explainable AI techniques like SHAP, LIME, and DiCE can uncover vulnerabilities, strengthen defenses, and improve trust and transparency in 6G enabled healthcare. We support our approach with experimental analysis and highlight promising results.
Abstract:Safely handling objects and avoiding slippage are fundamental challenges in robotic manipulation, yet traditional techniques often oversimplify the issue by treating slippage as a binary occurrence. Our research presents a framework that both identifies slip incidents and measures their severity. We introduce a set of features based on detailed vector field analysis of tactile deformation data captured by the GelSight Mini sensor. Two distinct machine learning models use these features: one focuses on slip detection, and the other evaluates the slip's severity, which is the slipping velocity of the object against the sensor surface. Our slip detection model achieves an average accuracy of 92%, and the slip severity estimation model exhibits a mean absolute error (MAE) of 0.6 cm/s for unseen objects. To demonstrate the synergistic approach of this framework, we employ both the models in a tactile feedback-guided vertical sliding task. Leveraging the high accuracy of slip detection, we utilize it as the foundational and corrective model and integrate the slip severity estimation into the feedback control loop to address slips without overcompensating.
Abstract:Wireless communication has evolved significantly, with 6G offering groundbreaking capabilities, particularly for IoT. However, the integration of IoT into 6G presents new security challenges, expanding the attack surface due to vulnerabilities introduced by advanced technologies such as open RAN, terahertz (THz) communication, IRS, massive MIMO, and AI. Emerging threats like AI exploitation, virtualization risks, and evolving attacks, including data manipulation and signal interference, further complicate security efforts. As 6G standards are set to be finalized by 2030, work continues to align security measures with technological advances. However, substantial gaps remain in frameworks designed to secure integrated IoT and 6G systems. Our research addresses these challenges by utilizing tree-based machine learning algorithms to manage complex datasets and evaluate feature importance. We apply data balancing techniques to ensure fair attack representation and use SHAP and LIME to improve model transparency. By aligning feature importance with XAI methods and cross-validating for consistency, we boost model accuracy and enhance IoT security within the 6G ecosystem.