Abstract:To break the context limits of large language models (LLMs) that bottleneck reasoning accuracy and efficiency, we propose the Thread Inference Model (TIM), a family of LLMs trained for recursive and decompositional problem solving, and TIMRUN, an inference runtime enabling long-horizon structured reasoning beyond context limits. Together, TIM hosted on TIMRUN supports virtually unlimited working memory and multi-hop tool calls within a single language model inference, overcoming output limits, positional-embedding constraints, and GPU-memory bottlenecks. Performance is achieved by modeling natural language as reasoning trees measured by both length and depth instead of linear sequences. The reasoning trees consist of tasks with thoughts, recursive subtasks, and conclusions based on the concept we proposed in Schroeder et al, 2025. During generation, we maintain a working memory that retains only the key-value states of the most relevant context tokens, selected by a rule-based subtask-pruning mechanism, enabling reuse of positional embeddings and GPU memory pages throughout reasoning. Experimental results show that our system sustains high inference throughput, even when manipulating up to 90% of the KV cache in GPU memory. It also delivers accurate reasoning on mathematical tasks and handles information retrieval challenges that require long-horizon reasoning and multi-hop tool use.
Abstract:Large language models (LLMs) have shown impressive capabilities across diverse settings, but still struggle as the length and complexity of the context increases. To address this challenge, we propose Thinking Recursively and Dynamically (ThReaD). THREAD frames model generation as a thread of execution that, based on the context, can run to completion or dynamically spawn new threads. By spawning, threads can offload work (e.g., thinking, retrieving information) to child threads, which only return tokens needed for the parent thread to do its work. In effect, this enables the model to adapt, as needed, the amount of intermediate work used to produce tokens. We apply THREAD in the settings of LLM task solving and question answering, where the dynamic threading allows the model to recursively decompose the given task or question into progressively simpler sub-problems that can be solved by separate child threads. We test THREAD, implemented using a few-shot learning approach, on diverse benchmarks for agent tasks and data-grounded question answering. THREAD achieves state-of-the-art performance with GPT-4 and GPT-3.5 on these benchmarks, including ALFWorld, TextCraft, and WebShop, along with two new benchmarks, DataCommons QA and MIMIC-III ICU QA. In addition, THREAD outperforms existing frameworks by 10% to 50% absolute points with smaller models, including Llama-3-8b and CodeLlama-7b.