Abstract:We propose an instance-wise adaptive sampling framework for constructing compact and informative training datasets for supervised learning of inverse problem solutions. Typical learning-based approaches aim to learn a general-purpose inverse map from datasets drawn from a prior distribution, with the training process independent of the specific test instance. When the prior has a high intrinsic dimension or when high accuracy of the learned solution is required, a large number of training samples may be needed, resulting in substantial data collection costs. In contrast, our method dynamically allocates sampling effort based on the specific test instance, enabling significant gains in sample efficiency. By iteratively refining the training dataset conditioned on the latest prediction, the proposed strategy tailors the dataset to the geometry of the inverse map around each test instance. We demonstrate the effectiveness of our approach in the inverse scattering problem under two types of structured priors. Our results show that the advantage of the adaptive method becomes more pronounced in settings with more complex priors or higher accuracy requirements. While our experiments focus on a particular inverse problem, the adaptive sampling strategy is broadly applicable and readily extends to other inverse problems, offering a scalable and practical alternative to conventional fixed-dataset training regimes.
Abstract:This work studies phase retrieval for wave fields, aiming to recover the phase of an incoming wave from multi-plane intensity measurements behind different types of linear and nonlinear media. We show that unique phase retrieval can be achieved by utilizing intensity data produced by multiple media. This uniqueness does not require prescribed boundary conditions for the phase in the incidence plane, in contrast to existing phase retrieval methods based on the transport of intensity equation. Moreover, the uniqueness proofs lead to explicit phase reconstruction algorithms. Numerical simulations are presented to validate the theory.