Abstract:The digital era has seen a marked increase in financial fraud. edge ML emerged as a promising solution for smartphone payment services fraud detection, enabling the deployment of ML models directly on edge devices. This approach enables a more personalized real-time fraud detection. However, a significant gap in current research is the lack of a robust system for monitoring data distribution shifts in these distributed edge ML applications. Our work bridges this gap by introducing a novel open-source framework designed for continuous monitoring of data distribution shifts on a network of edge devices. Our system includes an innovative calculation of the Kolmogorov-Smirnov (KS) test over a distributed network of edge devices, enabling efficient and accurate monitoring of users behavior shifts. We comprehensively evaluate the proposed framework employing both real-world and synthetic financial transaction datasets and demonstrate the framework's effectiveness.
Abstract:ML models are increasingly being pushed to mobile devices, for low-latency inference and offline operation. However, once the models are deployed, it is hard for ML operators to track their accuracy, which can degrade unpredictably (e.g., due to data drift). We design the first end-to-end system for continuously monitoring and adapting models on mobile devices without requiring feedback from users. Our key observation is that often model degradation is due to a specific root cause, which may affect a large group of devices. Therefore, once the system detects a consistent degradation across a large number of devices, it employs a root cause analysis to determine the origin of the problem and applies a cause-specific adaptation. We evaluate the system on two computer vision datasets, and show it consistently boosts accuracy compared to existing approaches. On a dataset containing photos collected from driving cars, our system improves the accuracy on average by 15%.