Abstract:Accurate univariate forecasting remains a pressing need in real-world systems, such as energy markets, hydrology, retail demand, and IoT monitoring, where signals are often intermittent and horizons span both short- and long-term. While transformers and Mixture-of-Experts (MoE) architectures are increasingly favored for time-series forecasting, a key gap persists: MoE models typically require complicated training with both the main forecasting loss and auxiliary load-balancing losses, along with careful routing/temperature tuning, which hinders practical adoption. In this paper, we propose a model architecture that simplifies the training process for univariate time series forecasting and effectively addresses both long- and short-term horizons, including intermittent patterns. Our approach combines sparse MoE computation with a novel attention-inspired gating mechanism that replaces the traditional one-layer softmax router. Through extensive empirical evaluation, we demonstrate that our gating design naturally promotes balanced expert utilization and achieves superior predictive accuracy without requiring the auxiliary load-balancing losses typically used in classical MoE implementations. The model achieves better performance while utilizing only a fraction of the parameters required by state-of-the-art transformer models, such as PatchTST. Furthermore, experiments across diverse datasets confirm that our MoE architecture with the proposed gating mechanism is more computationally efficient than LSTM for both long- and short-term forecasting, enabling cost-effective inference. These results highlight the potential of our approach for practical time-series forecasting applications where both accuracy and computational efficiency are critical.


Abstract:We address the problem of planning under uncertainty, where an agent must choose actions that not only achieve desired outcomes but also reduce uncertainty. Traditional methods often treat exploration and exploitation as separate objectives, lacking a unified inferential foundation. Active inference, grounded in the Free Energy Principle, offers such a foundation by minimizing Expected Free Energy (EFE), a cost function that combines utility with epistemic drives like ambiguity resolution and novelty seeking. However, the computational burden of EFE minimization has remained a major obstacle to its scalability. In this paper, we show that EFE-based planning arises naturally from minimizing a variational free energy functional on a generative model augmented with preference and epistemic priors. This result reinforces theoretical consistency with the Free Energy Principle, by casting planning itself as variational inference. Our formulation yields optimal policies that jointly support goal achievement and information gain, while incorporating a complexity term that accounts for bounded computational resources. This unifying framework connects and extends existing methods, enabling scalable, resource-aware implementations of active inference agents.