Abstract:Early and accurate detection of brain abnormalities, such as tumors and strokes, is essential for timely intervention and improved patient outcomes. In this study, we present a deep learning-based system capable of identifying both brain tumors and strokes from MRI images, along with their respective stages. We have executed two groundbreaking strategies involving convolutional neural networks, MobileNet V2 and ResNet-50-optimized through transfer learning to classify MRI scans into five diagnostic categories. Our dataset, aggregated and augmented from various publicly available MRI sources, was carefully curated to ensure class balance and image diversity. To enhance model generalization and prevent overfitting, we applied dropout layers and extensive data augmentation. The models achieved strong performance, with training accuracy reaching 93\% and validation accuracy up to 88\%. While ResNet-50 demonstrated slightly better results, Mobile Net V2 remains a promising option for real-time diagnosis in low resource settings due to its lightweight architecture. This research offers a practical AI-driven solution for early brain abnormality detection, with potential for clinical deployment and future enhancement through larger datasets and multi modal inputs.
Abstract:Human behavior and interactions are profoundly influenced by visual stimuli present in their surroundings. This influence extends to various aspects of life, notably food consumption and selection. In our study, we employed various models to extract different attributes from the environmental images. Specifically, we identify five key attributes and employ an ensemble model IMVB7 based on five distinct models for some of their detection resulted 0.85 mark. In addition, we conducted surveys to discern patterns in food preferences in response to visual stimuli. Leveraging the insights gleaned from these surveys, we formulate recommendations using decision tree for dishes based on the amalgamation of identified attributes resulted IMVB7t 0.96 mark. This study serves as a foundational step, paving the way for further exploration of this interdisciplinary domain.